STAT 545 MIDTERM EXAM

October 5, 2015

Instructions

- 1. You have 75 minutes to finish the exam.
- 2. This exam is closed-book. However, you may use your own two-page (both sides) cheat sheet prepared before the exam.
- 3. Please put your name on each page.
- 4. Try your best to answer each question. You may get partial credits for incomplete answers that are sufficiently relevant.
- 5. You may or may not need the following quantities in your answers to certain problems in the exam: Prob(X < 1.645) = .95 and Prob(X < 1.960) = 0.975 assuming $X \sim N(0, 1)$.
- 6. You do not need to do any calculations that require a calculator. That is, you can leave all your answers in appropriate expressions/formula with all relevant numbers plugged in.

1. [30 points] Consider the following 2×2 table of counts:

	-	Y	
X	1	2	Total
1	2	3	5
2	3	8	11
Total	5	11	16

- (1) Calculate the sample odds ratio, difference in proportions, and relative risk, and interpret. When needed, treat Y as the response variable in the calculations and interpretations.
- (2) Calculate the 95% confidence intervals for the odds ratio, difference in proportions, and relative risk.

(You do not need to worry about the continuity correction in this problem.)

2. [30 points] Consider the following 2×2 table with multinomial sampling:

Y			
X	1	2	Total
1	n_{11}	n_{12}	n_{1+}
2	n_{21}	n_{22}	n_{2+}
Total	n_{+1}	n_{+2}	n

- (a) Give the Pearson and likelihood ratio χ^2 statistics and corresponding degrees of freedom for testing the independence between X and Y.
- (b) Suppose $n_{11} = 1$, $n_{12} = 3$, $n_{21} = 3$, and $n_{22} = 1$. Let $\theta = n_{11}n_{22}/(n_{12}n_{21})$ be the odds ratio. To test H_0 : $\theta = 1$ against H_1 : $\theta < 1$, would you use the test statistics from (a)? Why or why not? If not, describe a test and compute the p-value. (If needed, you can treat the row and column totals as fixed.)
- 3. [20 points] For a 2 × 2 table with cell probabilities π_{ij} , i, j = 1, 2, consider testing the null hypothesis

$$H_0: \pi_{11} = \theta^2, \pi_{12} = \pi_{21} = \theta(1-\theta), \pi_{22} = (1-\theta)^2,$$

where $0 \le \theta \le 1$ is unknown. The sample $\{n_{11}, n_{12}, n_{21}, n_{22}\}$ is assumed to follow a multinomial $(n, \{\pi_{ij}\})$ distribution with a fixed n.

- (a) Show that the maximum likelihood estimate of θ under H_0 is given by $\hat{\theta} = (p_{1+} + p_{+1})/2$, where $p_{1+} = n_{1+}/n$ and $p_{+1} = n_{+1}/n$ with $n_{1+} = n_{11} + n_{12}$ and $n_{+1} = n_{11} + n_{21}$.
 - (b) Derive the χ^2 goodness-of-fit test for H_0 . Give the degree of freedom.
- 4. [20 points] (a) Find the normalization factor, denoted as $r(\theta)$, in the discrete probability distribution $f_Y(y;\theta) = r(\theta) \exp(\theta y)/y!$, y = 1, 2, ... (You may use the fact that for a Poisson random variable X with mean λ , $Pr(X = x) = \exp(-\lambda)\lambda^x/x!$, x = 0, 1, ...)
 - (b) Show that $f_Y(y;\theta)$ has the following exponential-family form:

$$f_Y(y; \theta, \phi) = \exp\{(y\theta - b(\theta))/a(\phi) + c(y, \phi)\}\$$

for some functions $a(\cdot)$, $b(\cdot)$ and $c(\cdot)$. Find the cumulant function $b(\theta)$ and hence derive the likelihood equation for $\hat{\theta}$ based on a sample of independent and identically distributed observations Y_1, \ldots, Y_n .