1.9

Number Corps-Ye	
109	
65	
22	
3	
1	
0	1

om dysmenorrhea. A new analgesic is than a standard one. After using each nt, 40 reported greater relief with the rted greater relief with the new one.

estimate of the binomial parameter π n it is near $\frac{1}{2}$?

$$P(Y_i = 0) = \pi, i = 1,..., n, \text{ where } \{Y_i\}$$

stribution of Y?

pairwise correlation $\rho > 0$, show that lispersion relative to the binomial. [Aleralizations of the binomial that allow

exists: $P(Y_i = 1|\pi) = \pi$ for all i, but π ensity function $g(\cdot)$ on [0, 1] having mean low that $var(Y) > n\rho(1 - \rho)$. (When π ? has the beta-binomial distribution of

= π_i , i = 1, ..., n, where $\{\pi_i\}$ are indefin why Y has a bin (n, ρ) distribution nditionally on $\{\pi_i\}$. (*Hint:* In each case, is dentical Bernoulli trials?)

ent Bernoulli trials, Y is the number of ailure. Explain why its probability mass

function is the negative binomial,

$$p(y) = \frac{(y+k-1)!}{y!(k-1)!} \pi^y (1-\pi)^k, \qquad y=0,1,2,\ldots.$$

[For it, $E(Y) = k\pi/(1 - \pi)$ and $var(Y) = k\pi/(1 - \pi)^2$, so var(Y) > E(Y); the Poisson is the limit as $k \to \infty$ and $\pi \to 0$ with $k\pi = \mu$ fixed.]

1.14 For the multinomial distribution, show that

$$\operatorname{corr}(n_j, n_k) = -\pi_j \pi_k / \sqrt{\pi_j (1 - \pi_j) \pi_k (1 - \pi_k)}.$$

Show that $corr(n_1, n_2) = -1$ when c = 2.

- Show that the moment generating function (mgf) for the binomial distribution is $m(t) = (1 \pi + \pi e^t)^n$, and use it to obtain the first two moments. Show that the mgf for the Poisson distribution is $m(t) = \exp(\mu[\exp(t) 1])$, and use it to obtain the first two moments.
- 1.16 A likelihood-ratio statistic equals t_o . At the ML estimates, show that the data are $\exp(t_o/2)$ times more likely under H_a than under H_0 .
- 1.17 Assume that y_1, y_2, \ldots, y_n are independent from a Poisson distribution.
 - a. Obtain the likelihood function. Show that the ML estimator $\hat{\mu} = \bar{y}$.
 - b. Construct a large-sample test statistic for H_0 : $\mu=\mu_0$ using (i) the Wald method, (ii) the score method, and (iii) the likelihood-ratio method.
 - c. Construct a large-sample confidence interval for μ using (i) the Wald method, (ii) the score method, and (iii) the likelihood-ratio method.
- 1.18 Inference for Poisson parameters can often be based on connections with binomial and multinomial distributions. Show how to test H_0 : $\mu_1 = \mu_2$ for two populations based on independent Poisson counts (y_1, y_2) , using a corresponding test about a binomial parameter π . [Hint: Condition on $n = y_1 + y_2$ and identify $\pi = \mu_1/(\mu_1 + \mu_2)$.] How can one construct a confidence interval for μ_1/μ_2 based on one for π ?
- 1.19 A researcher routinely tests using a nominal P(type I error) = 0.05, rejecting H_0 if the P-value ≤ 0.05 . An exact test using test statistic T