STAT 545: Categorical Data Analysis (Part II)

Liang Li

Department of Biostatistics
The University of Texas MD Anderson Cancer Center

LLi15@mdanderson.org

Fall 2015 at Rice University

Overview of Part II of this class

Oct 19, 2015 to December 2, 2015. There will be homework/projects and a final exam

- Regression model for binary data
- Regression model for counts data
- Regression model for ordinal data
- Extensions of standard regression models for categorical data
- Marginal models for longitudinal categorical data
- Conditional models for longitudinal categorical data

Logistic Regression Model

$$\pi(x) = P(Y = 1 | X = x) = 1 - P(Y = 0 | X = x)$$

$$= \operatorname{expit}(\alpha + \beta x) = \frac{\exp(\alpha + \beta x)}{1 + \exp(\alpha + \beta x)} \in (0, 1)$$

$$\operatorname{logit}[\pi(x)] = \log \frac{\pi(x)}{1 - \pi(x)} = \alpha + \beta x \in (-\infty, \infty)$$

- Binary outcome; for binomial outcome, the model is similar
- **2** Interpretation of β (log odds ratio)
- Simple visual model checking by grouping (§ 5.1.2)
- Logistic regression with retrospective studies (§ 5.1.4)
- Model fitting through maximum likelihood estimation (§ 5.5)
- Inference about model parameters and probabilities (§ 5.2.1)
- O Checking goodness of fit (§ 5.2.5)

The (log) odds ratio and its interpretation

$$\operatorname{logit}\left[\pi(x)\right] = \alpha + \beta x$$

logit
$$[\pi(\mathbf{x})] = \alpha + \beta_1 x_1 + \beta_2 x_2 + ... \beta_p x_p$$

Simple visual model checking by grouping

- Group the (continuous) covariate into 10 categories by cutoffs at the quantiles, with n_i subjects in each group (i = 1, 2, ..., 10)
- ② Calculate the average covariate within each group (\bar{x}_i)
- **3** Calculate the proportion of Y = 1 within each group (\bar{y}_i)
- **1** Plot logit of \bar{y}_i vs. \bar{x}_i . It should be approximately a straight line
- **1** Note: may need correction when $\bar{y}_i = 0$ or 1.

$$\log \frac{\bar{y}_i}{n_i - \bar{y}_i} \Rightarrow \log \frac{\bar{y}_i + 0.5}{n_i - \bar{y}_i + 0.5}$$

Only work with a single covariate

Logistic regression with retrospective studies (§ 5.1.4)

Model fitting through maximum likelihood estimation (§ 5.5)

Inference on parameters and probabilities (\S 5.2.1)

Test $H_0: \beta = 0$ in logistic model $\operatorname{logit}[\pi(x)] = \alpha + \beta x$

- Wald, Likelihood ratio, and Score tests are applicable (§ 1.3.3)
- The predicted probability and its confidence interval

Checking goodness of fit (§ 5.2.3)

$$logit [\pi(\mathbf{x})] = \alpha + \beta_1 x_1 + \beta_2 x_2$$

- Visual checking through grouping (works best with a single covariate)
- Adding interactions, quadratic terms, etc., and testing for significance or looking at AIC/BIC: problematic but widely used
- Making the model more flexible by using splines
- Global goodness of fit checking by Hosmer & Lemeshow test

$$\sum_{i=1}^{g} \frac{\left(\sum_{j} y_{ij} - \sum_{j} \hat{\pi}_{ij}\right)^{2}}{n_{i} \left(\sum_{j} \hat{\pi}_{ij} / n_{i}\right) \left[1 - \left(\sum_{j} \hat{\pi}_{ij}\right) / n_{i}\right]} \sim \chi_{g-2}^{2}$$

• A large value of any global fit statistic merely indicates *some* lack of fit but provides no insight about its nature

Logistic models with categorical predictors (§ 5.3)

- When there is a single categorical predictor, the data can be arranged in an $I \times 2$ contingency table (e.g., Table 5.3)
- When the categories are unordered (e.g., nominal data), the (saturated) model is $\operatorname{logit}(\pi_i) = \beta_i$ (i = 1, 2, ..., I), with I unknown parameters.
- We may write the model as $\operatorname{logit}(\pi_i) = \alpha + \beta_i$ with set-to-zero constraint $\beta_1 = 0$ or sum-to-zero constraint $\sum_i \beta_i = 0$
- The model for subject j (j = 1, 2, ..., n) is $logit(\pi_j) = \alpha + \sum_{i=1}^{I} \beta_i 1\{j \in \text{group } i\}$
- When the categories are ordered (e.g., ordinal data), we may assume that $\operatorname{logit}(\pi_i) = \alpha + \beta x_i$
 - The number of parameters reduced with the linear assumption.
 - Be careful about coding x_i (i=1,2,...,I): (1,2,3) or (1,4,9)?
 - Treat the x_i like a continuous variable.

Cochran-Armitage Trend Test (§ 5.3.5)

- Developed by Armitage (1955) and Cochran (1954) for $I \times 2$ tables with ordered rows
- They used a linear probability model $\pi = \alpha + \beta x_i$
- It is a chi-square test of the independence between rows and columns under the linear assumption. $H_0: \beta = 0$.
- This test is equivalent to the score statistic for testing H_0 : $\beta = 0$ in the linear logit model.
- Using directed models can improve inferential power
 - If the trend is indeed linear, making use of the linear trend (as in Cochran-Armitage test) is more powerful than not making use of the linear trend (as in $\operatorname{logit}(pi_i) = \beta_i$)

Model Selection (§ 6.1)

The data set is $\{Y_i, X_{1i}, X_{2i}, ..., X_{pi}; i = 1, 2, ..., n\}$. The logistic regression model is

$$\pi(\mathbf{X}_i) = \operatorname{expit} (\beta_0 + \beta_1 X_{1i} + \beta_2 X_{2i} + \dots + \beta_p X_{pi})$$

The p covariates include interactions, quadratic terms, etc. We want to retain only the predictive covariates in the model.

- Model selection is both science and art
- The same principles that you learned in linear model class still apply
- Two goals: (1) complex enough to fit the data well; (2) relatively simple to interpret (avoid overfitting)
- Confirmatory studies vs. exploratory studies

How many covariates can be included in the model?

$$Y_i \sim \text{Bernoulli with } \pi(\mathbf{X}_i) = \text{expit} (\beta_0 + \beta_1 X_{1i} + \beta_2 X_{2i} + ... + \beta_p X_{pi})$$

- The effective sample size of a logistic regression is either $\sum_i Y_i$ or $n - \sum_{i} Y_{i}$, whichever is smaller
- The rule of thumb: no more than the effective sample size divided by 10 (or, 10 events per covariate)
- Including too many covariates may cause non-convergence

- Avoid multicollinearity, as in linear regression (Page 209, Table 6.1)
 - The overall test is highly significant (p < 0.0001)
 - The individual covariates are, in general, not very significant due to the multicollinearity between the horseshoe crab's width and weight (r = 0.887)

Forward, backward, and stepwise model selection

$$Y_i \sim \text{Bernoulli with } \pi(\mathbf{X}_i) = \text{expit} \left(\beta_0 + \beta_1 X_{1i} + \beta_2 X_{2i} + ... + \beta_p X_{pi}\right)$$

- Forward procedure: (1) start with just the intercept (2) at each step, add the covariate with the smallest p-value in likelihood ratio or Wald test (3) stop when no more significant covariate is available (However, it can stop prematurely due to lack of power)
- Stepwise procedure: at each step, retest the significance of the terms added at previous stages
- Backward procedure: (1) start with full model (2) at each step, remove the covariate with the largest p-value (3) stop when all remaining covariates are significant. (However, full model may not be stable)
- The dummy variables for a single categorical covariate should be added or removed together (likelihood ratio test); do not place an interaction in the model without the main effect terms
- SAS PROC LOGISTIC offers additional entry and exit p-value criteria

Further comment on forward, backward, and stepwise model selection

$$Y_i \sim \text{Bernoulli with } \pi(\mathbf{X}_i) = \text{expit} \left(\beta_0 + \beta_1 X_{1i} + \beta_2 X_{2i} + \dots + \beta_p X_{pi}\right)$$

- Page 211, Table 6.2 illustrates
 - three-way interaction is usually not significant (e.g., lack of power) and not desirable (hard to interpret)
 - dropping multiple covariates at once using likelihood ratio test (LRT) or dropping them one at a time (Wald or LRT)
- All these procedures are not rigorously justified (ad hoc); use with caution!
- Modern approaches are available (LASSO, bagging, etc.)
- Philosophically, there is no such thing as "the correct model" or "the true model": ALL MODELS ARE WRONG, SOME ARE USEFUL — George Box

Akaike Information Criterion (AIC)

Select the model with smaller AIC or BIC (L: maximized log likelihood; m: number of parameters in the model; n: sample size)

$$AIC = -2L + 2m$$
$$BIC = -2L + \log(n)m$$

- Rationale: Including more covariates will always include the log likelihood, but may cause overfitting; so we put a "penalty" by adjusting for the size of the model. There are mathematical reasons why the penalty must take this form.
- Other penalties are available: HQ, DIC, etc.
- BIC puts more penalty on larger model, and therefore tends to select the simpler model Page 213
- Like scatter plot smoothing, the "desired" amount of penalty is a somewhat subjective choice
- Need a comprehensive assessment of AIC/BIC, significance, residuals, scientific rationale, parsimony and interpretability, etc.

Residuals: Pearson, Deviance, Standardized

Let y_i denote the binomial outcome for n_i trials at setting i of the explanatory variables, i=1,2,...,N. Let $\hat{\pi}_i$ denote the model estimate of P(Y=1).

- Pearson residual is like the residual for linear regression, but with standardization
- Deviance residual is motivated from the likelihood and deviance (which resembles the sum of squares in linear regression)
- Standardized residual has an approximate N(0,1) distribution and is the one that we usually use, BUT:
 - use it with grouped data (binomial instead of binary). Page 217,
 Table 6.5

Influence diagnosis for logistic regression

- A single observation can have a much more exorbitant influence in linear regression than in logistic regression, since linear regression has no bound on the distance of y_i from the expected value.
- Points that have extreme predictor values need not have high leverage. In fact, the leverage can be relatively small if $\hat{\pi}_i$ is close to 0 or 1.

Predictive power of a logistic regression model: pseudo R^2

• For linear regression $Y_i = \boldsymbol{X}_i^T \boldsymbol{\beta} + \epsilon_i$, the R^2 is

$$R^{2} = 1 - \frac{\sum_{i} \left(Y_{i} - \boldsymbol{X}_{i}^{T} \hat{\boldsymbol{\beta}} \right)^{2}}{\sum_{i} \left(Y_{i} - \bar{Y} \right)^{2}}$$

For logistic regression, the analog

$$1 - \frac{\sum_{i} (Y_i - \hat{\pi}_i)^2}{\sum_{i} (Y_i - \bar{Y})^2}$$

may not be nondecreasing as the model gets more complex (undesirable)

Predictive power of a logistic regression model: pseudo R^2

For logistic regression, a more widely used measure is the pseudo R^2 of McFadden (1974): $\frac{L_M-L_0}{L_S-L_0}=1-\frac{L_M}{L_0}$

$$L = \log \prod_{i=1}^{N} \left[\pi_i^{y_i} (1 - \hat{\pi}_i)^{1 - y_i} \right] = \sum_{i=1}^{N} \left[y_i \log \hat{\pi}_i + (1 - y_i) \log (1 - \hat{\pi}_i) \right]$$

- L_M is the log likelihood evaluated at the MLE $\hat{\pi}_i = \operatorname{expit}(\boldsymbol{X}_i^T \hat{\boldsymbol{\beta}})$
- L_0 is the log likelihood evaluated under the MLE of the null model: $\hat{\pi}_i = N^{-1} \sum_i y_i$
- L_S is the log likelihood evaluated under the saturated model with $\hat{\pi}_i = y_i$. $L_S = 0$

Receiver Operative Characteristics (ROC) curve

- $y_i = 0$ or 1. $\hat{\pi}_i \in (0,1)$. We classify the subject as a case (Y = 1) when $\hat{\pi} > c$ and control (Y = 0) when $\hat{\pi} \le c$.
- Sensitivity, specificity
- ROC curve p225
- The area under the ROC curve (AUC) is reported as c-statistic in SAS PROC LOGISTIC. It is a number between 0 and 1. AUC = 0.5 is like flipping a coin. So AUC < 0.5 is unlikely. Good classification requires AUC > 0.80 (excellent, > 0.9).