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Overview of Part II of this class

Oct 19, 2015 to December 2, 2015. There will be homework/projects and
a final exam

Regression model for binary data

Regression model for counts data

Regression model for ordinal data

Extensions of standard regression models for categorical data

Marginal models for longitudinal categorical data

Conditional models for longitudinal categorical data
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Logistic Regression Model

π(x) = P(Y = 1|X = x) = 1− P(Y = 0|X = x)

= expit (α + βx) =
exp(α + βx)

1 + exp(α + βx)
∈ (0, 1)

logit [π(x)] = log
π(x)

1− π(x)
= α + βx ∈ (−∞,∞)

1 Binary outcome; for binomial outcome, the model is similar

2 Interpretation of β (log odds ratio)

3 Simple visual model checking by grouping (§ 5.1.2)

4 Logistic regression with retrospective studies (§ 5.1.4)

5 Model fitting through maximum likelihood estimation (§ 5.5)

6 Inference about model parameters and probabilities (§ 5.2.1)

7 Checking goodness of fit (§ 5.2.5)
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The (log) odds ratio and its interpretation

logit [π(x)] = α + βx

logit [π(x)] = α + β1x1 + β2x2 + ...βpxp
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Simple visual model checking by grouping

1 Group the (continuous) covariate into 10 categories by cutoffs at the
quantiles, with ni subjects in each group (i = 1, 2, ..., 10)

2 Calculate the average covariate within each group (x̄i )

3 Calculate the proportion of Y = 1 within each group (ȳi )

4 Plot logit of ȳi vs. x̄i . It should be approximately a straight line

5 Note: may need correction when ȳi = 0 or 1.

log
ȳi

ni − ȳi
⇒ log

ȳi + 0.5

ni − ȳi + 0.5

6 Only work with a single covariate
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Logistic regression with retrospective studies (§ 5.1.4)
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Model fitting through maximum likelihood estimation (§
5.5)
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Inference on parameters and probabilities (§ 5.2.1)

Test H0 : β = 0 in logistic model logit [π(x)] = α + βx

1 Wald, Likelihood ratio, and Score tests are applicable (§ 1.3.3)

2 The predicted probability and its confidence interval
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Checking goodness of fit (§ 5.2.3)

logit [π(x)] = α + β1x1 + β2x2
1 Visual checking through grouping (works best with a single covariate)

2 Adding interactions, quadratic terms, etc., and testing for significance
or looking at AIC/BIC: problematic but widely used

3 Making the model more flexible by using splines

4 Global goodness of fit checking by Hosmer & Lemeshow test

g∑
i=1

(∑
j yij −

∑
j π̂ij

)2
ni

(∑
j π̂ij/ni

) [
1−

(∑
j π̂ij

)
/ni

] ∼ χ2
g−2

A large value of any global fit statistic merely indicates some lack of fit
but provides no insight about its nature
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Logistic models with categorical predictors (§ 5.3)

When there is a single categorical predictor, the data can be arranged
in an I × 2 contingency table (e.g., Table 5.3)

When the categories are unordered (e.g., nominal data), the
(saturated) model is logit(πi ) = βi (i = 1, 2, ..., I ), with I unknown
parameters.

We may write the model as logit(πi ) = α + βi with set-to-zero
constraint β1 = 0 or sum-to-zero constraint

∑
i βi = 0

The model for subject j (j = 1, 2, ..., n) is
logit(πj) = α +

∑I
i=1 βi1{j ∈ group i}

When the categories are ordered (e.g., ordinal data), we may assume
that logit(πi ) = α + βxi

The number of parameters reduced with the linear assumption.
Be careful about coding xi (i=1,2,...,I): (1,2,3) or (1,4,9)?
Treat the xi like a continuous variable.

Liang Li (MD Anderson Cancer Center) STAT 545 (Part II) Fall 2015 at Rice University 10 / 21



Cochran-Armitage Trend Test (§ 5.3.5)

Developed by Armitage (1955) and Cochran (1954) for I × 2 tables
with ordered rows

They used a linear probability model π = α + βxi

It is a chi-square test of the independence between rows and columns
under the linear assumption. H0 : β = 0.

This test is equivalent to the score statistic for testing H0 : β = 0 in
the linear logit model.

Using directed models can improve inferential power

If the trend is indeed linear, making use of the linear trend (as in
Cochran-Armitage test) is more powerful than not making use of the
linear trend (as in logit(pii ) = βi )
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Model Selection (§ 6.1)

The data set is {Yi ,X1i ,X2i , ...,Xpi ; i = 1, 2, ..., n}. The logistic regression
model is

π(Xi ) = expit (β0 + β1X1i + β2X2i + ...+ βpXpi )

The p covariates include interactions, quadratic terms, etc. We want to
retain only the predictive covariates in the model.

Model selection is both science and art

The same principles that you learned in linear model class still apply

Two goals: (1) complex enough to fit the data well; (2) relatively

simple to interpret (avoid overfitting)

Confirmatory studies vs. exploratory studies
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How many covariates can be included in the model?

Yi ∼ Bernoulli with π(Xi ) = expit (β0 + β1X1i + β2X2i + ...+ βpXpi )

The effective sample size of a logistic regression is either
∑

i Yi or
n −

∑
i Yi , whichever is smaller

The rule of thumb: no more than the effective sample size divided
by 10 (or, 10 events per covariate)

Including too many covariates may cause non-convergence

Avoid multicollinearity, as in linear regression ( Page 209, Table
6.1)

The overall test is highly significant (p < 0.0001)
The individual covariates are, in general, not very significant due to the
multicollinearity between the horseshoe crab’s width and weight
(r = 0.887)
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Forward, backward, and stepwise model selection

Yi ∼ Bernoulli with π(Xi ) = expit (β0 + β1X1i + β2X2i + ...+ βpXpi )

Forward procedure: (1) start with just the intercept (2) at each step, add
the covariate with the smallest p-value in likelihood ratio or Wald test (3)
stop when no more significant covariate is available (However, it can stop
prematurely due to lack of power)

Stepwise procedure: at each step, retest the significance of the terms added
at previous stages

Backward procedure: (1) start with full model (2) at each step, remove the
covariate with the largest p-value (3) stop when all remaining covariates are
significant. (However, full model may not be stable)

The dummy variables for a single categorical covariate should be added or
removed together (likelihood ratio test); do not place an interaction in the
model without the main effect terms

SAS PROC LOGISTIC offers additional entry and exit p-value criteria
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Further comment on forward, backward, and stepwise
model selection

Yi ∼ Bernoulli with π(Xi ) = expit (β0 + β1X1i + β2X2i + ...+ βpXpi )

Page 211, Table 6.2 illustrates

three-way interaction is usually not significant (e.g., lack of power) and
not desirable (hard to interpret)
dropping multiple covariates at once using likelihood ratio test (LRT)
or dropping them one at a time (Wald or LRT)

All these procedures are not rigorously justified (ad hoc); use with caution!

Modern approaches are available (LASSO, bagging, etc.)

Philosophically, there is no such thing as “the correct model” or “the true
model”: ALL MODELS ARE WRONG, SOME ARE USEFUL — George Box
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Akaike Information Criterion (AIC)

Select the model with smaller AIC or BIC (L: maximized log likelihood; m:
number of parameters in the model; n: sample size)

AIC = − 2L + 2m

BIC = − 2L + log(n)m

Rationale: Including more covariates will always include the log likelihood,
but may cause overfitting; so we put a “penalty” by adjusting for the size of
the model. There are mathematical reasons why the penalty must take this
form.

Other penalties are available: HQ, DIC, etc.

BIC puts more penalty on larger model, and therefore tends to select the
simpler model Page 213

Like scatter plot smoothing, the “desired” amount of penalty is a somewhat

subjective choice

Need a comprehensive assessment of AIC/BIC, significance, residuals,
scientific rationale, parsimony and interpretability, etc.
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Residuals: Pearson, Deviance, Standardized

Let yi denote the binomial outcome for ni trials at setting i of the
explanatory variables, i = 1, 2, ...,N. Let π̂i denote the model estimate of
P(Y = 1).

Pearson residual is like the residual for linear regression, but with
standardization

Deviance residual is motivated from the likelihood and deviance
(which resembles the sum of squares in linear regression)
Standardized residual has an approximate N(0, 1) distribution and is
the one that we usually use, BUT:

use it with grouped data (binomial instead of binary). Page 217,
Table 6.5
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Influence diagnosis for logistic regression

A single observation can have a much more exorbitant influence in
linear regression than in logistic regression, since linear regression has
no bound on the distance of yi from the expected value.

Points that have extreme predictor values need not have high leverage.
In fact, the leverage can be relatively small if π̂i is close to 0 or 1.
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Predictive power of a logistic regression model: pseudo R2

For linear regression Yi = X
T
i β + εi , the R2 is

R2 = 1−

∑
i

(
Yi − XT

i β̂
)2

∑
i

(
Yi − Ȳ

)2
For logistic regression, the analog

1−
∑

i (Yi − π̂i )2∑
i

(
Yi − Ȳ

)2
may not be nondecreasing as the model gets more complex
(undesirable)
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Predictive power of a logistic regression model: pseudo R2

For logistic regression, a more widely used measure is the pseudo R2 of

McFadden (1974):
LM − L0
LS − L0

= 1− LM
L0

L = log
N∏
i=1

[
πyii (1− π̂i )1−yi

]
=

N∑
i=1

[yi log π̂i + (1− yi ) log(1− π̂i )]

LM is the log likelihood evaluated at the MLE π̂i = expit(XT
i β̂)

L0 is the log likelihood evaluated under the MLE of the null model:
π̂i = N−1

∑
i yi

LS is the log likelihood evaluated under the saturated model with
π̂i = yi . LS = 0
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Receiver Operative Characteristics (ROC) curve

yi = 0 or 1. π̂i ∈ (0, 1). We classify the subject as a case (Y = 1)
when π̂ > c and control (Y = 0) when π̂ ≤ c .

Sensitivity, specificity

ROC curve p225

The area under the ROC curve (AUC) is reported as c-statistic in
SAS PROC LOGISTIC. It is a number between 0 and 1. AUC = 0.5
is like flipping a coin. So AUC < 0.5 is unlikely. Good classification
requires AUC > 0.80 (excellent, > 0.9).
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