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Overview of Part II of this class

Oct 19, 2015 to December 2, 2015. There will be homework/projects and
a final exam

Regression model for binary data

Regression model for ordinal data

Regression model for counts data

Extensions of standard regression models for categorical data

Marginal models for longitudinal categorical data

Conditional models for longitudinal categorical data
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Chapter 5 & 6

Logistic Regression
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Logistic Regression Model

π(x) = P(Y = 1|X = x) = 1− P(Y = 0|X = x)

= expit (α + βx) =
exp(α + βx)

1 + exp(α + βx)
∈ (0, 1)

logit [π(x)] = log
π(x)

1− π(x)
= α + βx ∈ (−∞,∞)

1 Binary outcome; for binomial outcome, the model is similar

2 Interpretation of β (log odds ratio)

3 Simple visual model checking by grouping (§ 5.1.2)

4 Logistic regression with retrospective studies (§ 5.1.4)

5 Model fitting through maximum likelihood estimation (§ 5.5)

6 Inference about model parameters and probabilities (§ 5.2.1)

7 Checking goodness of fit (§ 5.2.5)
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The (log) odds ratio and its interpretation

logit [π(x)] = α + βx

logit [π(x)] = α + β1x1 + β2x2 + ...βpxp
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Simple visual model checking by grouping

1 Group the (continuous) covariate into 10 categories by cutoffs at the
quantiles, with ni subjects in each group (i = 1, 2, ..., 10)

2 Calculate the average covariate within each group (x̄i )

3 Calculate the proportion of Y = 1 within each group (ȳi )

4 Plot logit of ȳi vs. x̄i . It should be approximately a straight line

5 Note: may need correction when ȳi = 0 or 1.

log
ȳi

ni − ȳi
⇒ log

ȳi + 0.5

ni − ȳi + 0.5

6 Only work with a single covariate
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Logistic regression with retrospective studies (§ 5.1.4)
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Model fitting through maximum likelihood estimation (§
5.5)
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Inference on parameters and probabilities (§ 5.2.1)

Test H0 : β = 0 in logistic model logit [π(x)] = α + βx

1 Wald, Likelihood ratio, and Score tests are applicable (§ 1.3.3)

2 The predicted probability and its confidence interval

Liang Li (MD Anderson Cancer Center) STAT 545 (Part II) Fall 2015 at Rice University 9 / 53



Checking goodness of fit (§ 5.2.3)

logit [π(x)] = α + β1x1 + β2x2
1 Visual checking through grouping (works best with a single covariate)

2 Adding interactions, quadratic terms, etc., and testing for significance
or looking at AIC/BIC: problematic but widely used

3 Making the model more flexible by using splines

4 Global goodness of fit checking by Hosmer & Lemeshow test

g∑
i=1

(∑
j yij −

∑
j π̂ij

)2
ni

(∑
j π̂ij/ni

) [
1−

(∑
j π̂ij

)
/ni

] ∼ χ2
g−2

A large value of any global fit statistic merely indicates some lack of fit
but provides no insight about its nature
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Logistic models with categorical predictors (§ 5.3)

When there is a single categorical predictor, the data can be arranged
in an I × 2 contingency table (e.g., Table 5.3)

When the categories are unordered (e.g., nominal data), the
(saturated) model is logit(πi ) = βi (i = 1, 2, ..., I ), with I unknown
parameters.

We may write the model as logit(πi ) = α + βi with set-to-zero
constraint β1 = 0 or sum-to-zero constraint

∑
i βi = 0

The model for subject j (j = 1, 2, ..., n) is
logit(πj) = α +

∑I
i=1 βi1{j ∈ group i}

When the categories are ordered (e.g., ordinal data), we may assume
that logit(πi ) = α + βxi

The number of parameters reduced with the linear assumption.
Be careful about coding xi (i=1,2,...,I): (1,2,3) or (1,4,9)?
Treat the xi like a continuous variable.
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Cochran-Armitage Trend Test (§ 5.3.5)

Developed by Armitage (1955) and Cochran (1954) for I × 2 tables
with ordered rows

They used a linear probability model π = α + βxi

It is a chi-square test of the independence between rows and columns
under the linear assumption. H0 : β = 0.

This test is equivalent to the score statistic for testing H0 : β = 0 in
the linear logit model.

Using directed models can improve inferential power

If the trend is indeed linear, making use of the linear trend (as in
Cochran-Armitage test) is more powerful than not making use of the
linear trend (as in logit(pii ) = βi )
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Model Selection (§ 6.1)

The data set is {Yi ,X1i ,X2i , ...,Xpi ; i = 1, 2, ..., n}. The logistic regression
model is

π(Xi ) = expit (β0 + β1X1i + β2X2i + ...+ βpXpi )

The p covariates include interactions, quadratic terms, etc. We want to
retain only the predictive covariates in the model.

Model selection is both science and art

The same principles that you learned in linear model class still apply

Two goals: (1) complex enough to fit the data well; (2) relatively

simple to interpret (avoid overfitting)

Confirmatory studies vs. exploratory studies
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How many covariates can be included in the model?

Yi ∼ Bernoulli with π(Xi ) = expit (β0 + β1X1i + β2X2i + ...+ βpXpi )

The effective sample size of a logistic regression is either
∑

i Yi or
n −

∑
i Yi , whichever is smaller

The rule of thumb: no more than the effective sample size divided
by 10 (or, 10 events per covariate)

Including too many covariates may cause non-convergence

Avoid multicollinearity, as in linear regression ( Page 209, Table
6.1)

The overall test is highly significant (p < 0.0001)
The individual covariates are, in general, not very significant due to the
multicollinearity between the horseshoe crab’s width and weight
(r = 0.887)
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Forward, backward, and stepwise model selection

Yi ∼ Bernoulli with π(Xi ) = expit (β0 + β1X1i + β2X2i + ...+ βpXpi )

Forward procedure: (1) start with just the intercept (2) at each step, add
the covariate with the smallest p-value in likelihood ratio or Wald test (3)
stop when no more significant covariate is available (However, it can stop
prematurely due to lack of power)

Stepwise procedure: at each step, retest the significance of the terms added
at previous stages

Backward procedure: (1) start with full model (2) at each step, remove the
covariate with the largest p-value (3) stop when all remaining covariates are
significant. (However, full model may not be stable)

The dummy variables for a single categorical covariate should be added or
removed together (likelihood ratio test); do not place an interaction in the
model without the main effect terms

SAS PROC LOGISTIC offers additional entry and exit p-value criteria
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Further comment on forward, backward, and stepwise
model selection

Yi ∼ Bernoulli with π(Xi ) = expit (β0 + β1X1i + β2X2i + ...+ βpXpi )

Page 211, Table 6.2 illustrates

three-way interaction is usually not significant (e.g., lack of power) and
not desirable (hard to interpret)
dropping multiple covariates at once using likelihood ratio test (LRT)
or dropping them one at a time (Wald or LRT)

All these procedures are not rigorously justified (ad hoc); use with caution!

Modern approaches are available (LASSO, bagging, etc.)

Philosophically, there is no such thing as “the correct model” or “the true
model”: ALL MODELS ARE WRONG, SOME ARE USEFUL — George Box
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Akaike Information Criterion (AIC)

Select the model with smaller AIC or BIC (L: maximized log likelihood; m:
number of parameters in the model; n: sample size)

AIC = − 2L + 2m

BIC = − 2L + log(n)m

Rationale: Including more covariates will always include the log likelihood,
but may cause overfitting; so we put a “penalty” by adjusting for the size of
the model. There are mathematical reasons why the penalty must take this
form.

Other penalties are available: HQ, DIC, etc.

BIC puts more penalty on larger model, and therefore tends to select the
simpler model Page 213

Like scatter plot smoothing, the “desired” amount of penalty is a somewhat

subjective choice

Need a comprehensive assessment of AIC/BIC, significance, residuals,
scientific rationale, parsimony and interpretability, etc.
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Residuals: Pearson, Deviance, Standardized

Let yi denote the binomial outcome for ni trials at setting i of the
explanatory variables, i = 1, 2, ...,N. Let π̂i denote the model estimate of
P(Y = 1).

Pearson residual is like the residual for linear regression, but with
standardization

Deviance residual is motivated from the likelihood and deviance
(which resembles the sum of squares in linear regression)
Standardized residual has an approximate N(0, 1) distribution and is
the one that we usually use, BUT:

use it with grouped data (binomial instead of binary). Page 217,
Table 6.5
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Influence diagnosis for logistic regression

A single observation can have a much more exorbitant influence in
linear regression than in logistic regression, since linear regression has
no bound on the distance of yi from the expected value.

Points that have extreme predictor values need not have high leverage.
In fact, the leverage can be relatively small if π̂i is close to 0 or 1.
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Predictive power of a logistic regression model: pseudo R2

For linear regression Yi = XT
i β + εi , the R2 is

R2 = 1−

∑
i

(
Yi − XT

i β̂
)2

∑
i

(
Yi − Ȳ

)2
For logistic regression, the analog

1−
∑

i (Yi − π̂i )2∑
i

(
Yi − Ȳ

)2
may not be nondecreasing as the model gets more complex
(undesirable)
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Predictive power of a logistic regression model: pseudo R2

For logistic regression, a more widely used measure is the pseudo R2 of

McFadden (1974):
LM − L0
LS − L0

= 1− LM
L0

L = log
N∏
i=1

[
πyii (1− π̂i )1−yi

]
=

N∑
i=1

[yi log π̂i + (1− yi ) log(1− π̂i )]

LM is the log likelihood evaluated at the MLE π̂i = expit(XT
i β̂)

L0 is the log likelihood evaluated under the MLE of the null model:
π̂i = N−1

∑
i yi

LS is the log likelihood evaluated under the saturated model with
π̂i = yi . LS = 0
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Receiver Operative Characteristics (ROC) curve

Yi = 0 (non disease) or 1 (disease). Estimated viral load π̂i ∈ (0, 1).
We classify the subject as a case (Y = 1) when π̂ > c and control
(Y = 0) when π̂ ≤ c.

Sensitivity P(π̂ > c|Y = 1)⇐
∑

i 1{π̂i > c}∑
i Yi

Specificity P(π̂ ≤ c |Y = 0)⇐
∑

i 1{π̂i ≤ c}∑
i (1− Yi )

ROC curve p225

The area under the ROC curve (AUC) is reported as c-statistic in
SAS PROC LOGISTIC. It is a number between 0 and 1. AUC = 0.5
is like flipping a coin. So AUC < 0.5 is unlikely. Good classification
requires AUC > 0.80 (excellent, > 0.9).
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ROC Curve
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Cochran-Mantel-Haenszel Test (§ 6.4)

Study the association between a treatment variable (e.g., binary) and
a disease outcome (e.g., binary) after adjusting for a possibly
confounding variable (e.g., categorical or continuous but grouped)
that might influence that association

Example in Table 6.9: multicenter randomized clinical trial comparing
treatment vs. placebo on a binary outcome (cured vs. not)

The logistic regression approach (i = 1, 2; k = 1, 2, ...,K ; xi = 1 or 2):

πik = P(Y = 1|X = i ,Z = k)

logit(πik) = α + βxi + βZk

Test H0: β = 0 using Wald or likelihood ratio test

What if there is interaction between X and Z , i.e., β depends on Z?
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Table 6.9
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Cochran-Mantel-Haenszel Test (§ 6.4)

Data from Center k (k = 1, 2, ...,K )
cured not Total

Treatment n11k n12k n1+k

placebo n21k n22k n2+k

Total n+1k n+2k n++k

Test H0: Treatment and outcome independent conditional on center

Both the treatment (row) and outcome (column) totals fixed, n11k ∼
hypergeometric distribution

Under the null, the hypergeometric mean and variance of n11k are

µ11k = E (n11k) = n1+kn+1k/n++k

var(n11k) = n1+kn2+kn+1kn+2k/[n2++k(n++k − 1)]

The CMH statistic is CMH =
[
∑

k(n11k − µ11k)]2∑
k var(n11k)

, which has a large

sample chi-squared null distribution with df = 1.
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Cochran-Mantel-Haenszel Test vs. Logistic Regression

When the sample size per center (also called strata) is moderately
large, the two produce similar results (CMH is a score test of the
logistic model)

When the number of strata is large (like matched pairs data), the
logistic regression does not apply but CMH still applies

A point estimator of the overall odds ratio is available from CMH

θ̂CMH =

∑
k (n11kn22k/n++k)∑
k (n12kn21k/n++k)

=

∑
k n++kp11|kp22|k∑
k n++kp12|kp21|k

CMH is the standard method for stratified analysis of categorical
data, applicable to I × J × K contingency table

If the treatment effect differs across strata (interaction), use logistic
model with interaction
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Quasi-complete Separation in Logistic Regression

Be careful about excessively large (or small) odds ratios or excessively
large standard errors

multi-colinearity; remove one of the correlated covariates
complete or quasi-complete separation

Complete separation: there exists a vector b such that bTx i > 0
whenever yi = 1 and bTx i < 0 whenever yi = 0. (more likely with
continuous covariates)

Quasi-complete separation: bTx i ≥ 0 whenever yi = 1 and bTx i ≤ 0
whenever yi = 0. (more likely with categorical covariates)

Not a problem with linear regression
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Chapter 8

Regression Models for Multinomial Data
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Models for Multinomial Responses (§ 8)

Nominal data vs. ordinal data: presence or absence of intrinsic order

For nominal outcome variable Y = 1, 2, ..., J. We need to model
πj(x) = P(Y = j |x) under constraint

∑
j πj(x) = 1.

Y follows a multinomial distribution with probabilities
{π1(x), ..., πJ(x)}.
Baseline-category logit model (e.g., pick J as the baseline/reference
category)

log
πj(x)

πJ(x)
= αj + βT

j x , j = 1, 2, ..., J − 1

These J − 1 equations determine parameters for logits with other
pairs of response categories, as well as the response probabilities:

log
πa(x)

πb(x)
= log

πa(x)

πJ(x)
− log

πb(x)

πJ(x)
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Models for Multinomial Responses: baseline-category logit
model

The constraint leads to: πJ(x) =
1

1 +
∑J−1

j=1 exp
(
αj + βT

j x
)

The probability for the j-th category (j = 1, 2, ..., J − 1):

πj(x) =
exp

(
αj + βT

j x
)

1 +
∑J−1

j=1 exp
(
αj + βT

j x
)

With more than two response categories (J > 2), the probability of a
given category need not continuously increase or decrease (e.g., πj(x)

may not be a monotone function of x)
The model is fit by maximum likelihood. Let y i = (yi1, yi2, ..., yiJ),
where yij = 1 when the response is in category j and 0 otherwise, so
that

∑
j yij = 1. The log likelihood is:

n∑
i=1

log

 J∏
j=1

πj(x i )
yij


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Models for Ordinal Responses (§ 8.2)

Y = 1, 2, ..., J. We need to model πj(x) = P(Y = j |x) under
constraint

∑
j πj(x) = 1.

Due to the intrinsic ordering of the response categories, we model the
cumulative probabilities

P(Y ≤ j |x) = π1(x) + ...+ πj(x)

The cumulative logits are defined as:

logit[P(Y ≤ j |x)] = log
P(Y ≤ j |x)

1− P(Y ≤ j |x)
= log

π1(x) + ...+ πj(x)

πj+1(x) + ...+ πJ(x)

Cumulative logit model

logit[P(Y ≤ j |x)] = αj + βTx , j = 1, 2, ..., J − 1

The cumulative logit is monotone in x ; this feature not available in
baseline-category logit model
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Proportional Odds Model

Proportional odds model logit[P(Y ≤ j |x)] = αj + βTx , where
j = 1, 2, ..., J − 1
Need to assume the same β for each logit. Therefore, cumulative
logit model is also called the proportional odds model

logit[P(Y ≤ j |x1)]− logit[P(Y ≤ j |x2)] = βT (x1 − x2)

Cumulative odds ratio exp(β) does not depend on j , i.e., βj ≡ β, ∀j
We cannot make the model more generalizable by letting replacing β
with βj : the different cumulative probabilities may cross, which is

impossible
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Proportional Odds Model

The model parameters are estimated by maximum likelihood
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Latent Variable Motivation for Proportional Odds Model

A continuous latent variable y∗ with y∗ = β̃
T
x + ε and the

distribution function of ε is G (.) (not mean zero)

Thresholds −∞ = α̃0 < α̃1 < ... < α̃J =∞
The observed response y satisfies y = j if α̃j−1 < y∗ ≤ α̃j

P(Y ≤ j |x) = P(y∗ ≤ α̃j |x) = G (α̃j − β̃
T
x)

The proportional odds model

P(Y ≤ j |x) = expit
(
αj + βTx

)
G (.) ∼ expit(.), G−1(.) ∼ logit(.), α̃j = αj , β̃ = −β
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Proportional Odds Model: Interpretation using latent
variable
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Probit and Logit: Latent Variable Motivation for Binary
Outcome Model

A continuous latent variable y∗ with y∗ = β̃
T
x + ε (no intercept)

and the distribution function of ε is G (.)

Threshold −∞ < α̃ <∞. The observed response y satisfies y = 1 if
y∗ ≤ α̃ and y = 0 otherwise

P(Y = 1|x) = P(y∗ ≤ α̃|x) = G (α̃− β̃
T
x)

The logistic regression model: P(Y = 1|x) = expit
(
α + βTx

)
.

G (.) ∼ expit(.), G−1(.) ∼ logit(.), α̃ = α, β̃ = −β
The probit regression model: P(Y = 1|x) = Φ

(
α + βTx

)
.

G (.) ∼ Φ(.), G−1(.) ∼ Φ−1(.), α̃ = α, β̃ = −β
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Check the Proportional Odds Assumption

P(Y ≤ j |x) = expit
(
αj + βTx

)
Proportional odds model is parsimonious and easy to interpret

Replacing β with βj may cause the cumulative probabilities to cross

A score test of proportional odds model is available (SAS PROC
LOGISTIC)

Retain proportional odds model unless there is strong deviation from
this assumption

What to do when the proportional odds assumption is violated:

Adding additional terms, such as interaction
alternative ordinal model (next slides)
partial proportional odds model (SAS PROC LOGISTIC)
baseline category logit model
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Alternative Models for Ordinal Data

Cumulative link model: G−1 [P(Y ≤ j |x)] = αj + βTx

Cumulative probit model: Φ−1 [P(Y ≤ j |x)] = αj + βTx

Cumulative complementary log-log model:
log {− log [1− P(Y ≤ j |x)]} = αj + βTx

Equivalent to a latent variable model with extreme value distribution
for the residuals
Equivalent to proportional hazard model in for discrete survival data

analysis (e.g., year of death at 1, 2, 3, ... )
Rare event logistic regression

Adjacent category logit model

Continuation ratio logit model

Liang Li (MD Anderson Cancer Center) STAT 545 (Part II) Fall 2015 at Rice University 39 / 53



Section 4.3, 4.7

Regression Models for Counts Data
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Poisson Regression: introduction

Applicable to counts data 0, 1, 2, ....... Popularized in the 1970s and
1980s.

Suppose Y has Poisson distribution with mean µ

P(Y = y) =
e−µµy

y !
, y = 0, 1, 2, ... (1)

and E (Y ) = var(Y ) = µ

Suppose we want to relate Y to a covariate X , we assume
g(µ) = α + βX . What choices do we have for the link function g(.)?
Any monotone mapping from (0,∞) to (−∞,∞)?

Log link (log linear model) µ = exp(α+ βX ): the multiplicative effect
of X on µ. Interpret exp(β) as a rate ratio.

Example: A study of 400 patients with malignant melanoma. Y :
tumor counts; X : tumor type (Hutchinson’s, Superficial, Nodular,
Indeterminate) and tumor site (Head & Neck, Trunk, Extremities)
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Poisson Regression: Offset

Frequently, discrete counts represent information collected over time
(days, years) or in space (volume for bacteria counts) and interest lies
in modeling rates. Denote the exposure time or volume by N, then
the rate is Y /N, which has expectation µ/N.

Modeling this rate with a log linear model as log
µ

N
= α + βX . That

is log µ = α + βX + log(N) or µ = N exp(α + βX ).

Y ∼ Poisson(µ).

The log-likelihood is

L = log
n∏

i=1

µYi
i {exp(−µi )}/Yi ! , µi = Ni exp(α + βXi )
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Poisson Regression: Example with Offset

Table 12.2 of “Categorical Data Analysis with the SAS System”.

Region Age Group Cases Total
North < 35 61 2,880,262
South 35− 44 76 564,535

... ... ... ...

Counts: number of new cases in 1961-1971; offset: size of the
populations at risk; covariates: age group and region

Can this example be analyzed with binomial regression?

proc genmod data = melanoma order = data ;
class age region ;
model cases = age region / dist = poisson link = log offset = ltotal ;
run ;
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Poisson Regression: Overdispersion

Real data often have more variation than expected from a Poisson
distribution (due to unobserved heterogeneity not captured by the
covariates); var(Y ) > E (Y ).

Discover overdispersion through overdispersion parameter (next slide)

Three ways to correct for overdispersion

Overdispersion model
Negative binomial regression
Poisson regression with random effect (later)
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Overdispersion Model

var(Y ) = φE (Y ). φ > 1 is the dispersion parameter. (0 < φ < 1 is
called under dispersion)

µi = E (Yi |X i ) = Ni exp(XT
i θ) and var(Yi |X i ) = φµi . In a Poisson

regression model, we model the mean as a function of covariates, but
not φ

The likelihood equation 0 =
∑n

i=1

(
Yi − Ni exp(XT

i θ)
)
X i , which

uses only the mean function. So the point estimator is always correct
even when overdispersion is ignored; but variance estimation and
p-values will be incorrect.

Estimate φ , and then multiply the ordinary standard error

estimates by

√
φ̂. Example in page 150

An approximate method motivated from quasi-likelihood ideas

Maybe wrong if the mean function is misspecified (major weakness)
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Overdispersion with Binomial Model

yi is the sample proportion from ni Bernoulli trials with parameter πi ,
i = 1, 2, ..., n.

According to binomial model E (Yi ) = πi and var(Yi ) = πi (1−πi )/ni .
v(πi ) = φπi (1− πi )/ni
Estimate φ by X 2/(n − p) and multiply the standard error by

√
(φ̂)

Not applicable when some ni = 1 (and some not) because φ can only
be 1 in this case.
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Negative Binomial Regression §4.3.4

If Y has a Poisson distribution with both mean and variance equal to
λ, and λ has a gamma distribution (extra variation; overdispersion)
with mean µ and variance µ2/k , then marginally Y has a negative
binomial distribution with mean µ and variance µ+ γµ2

(γ = 1/k > 0)

When γ → 0 (random effect variance approaches zero), the NB
distribution approaches Poisson

Like the overdispersion model, we let γ to be a overdispersion
constant and model the mean µ = N exp(XT θ).

Standard error will become larger after applying negative binomial
regression

Preferred over overdispersion model

Available in SAS PROC GENMOD
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Section 11.2

Conditional Logistic Regression for Binary Matched Pairs
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Conditional Logistic Regression

(Positively) correlated continuous data

(Positively) correlated binary data

For the example in Table 11.1 , let (Yi1,Yi2) denote the
data pair, i = 1, 2, ..., n. The conditional logistic regression model is
(xt = 0 or 1)

logit[P(Yij = 1)] = µ+ βxt + αi , t = 1, 2

αi is the random intercept, analogous to the linear regression case. It
has a distribution, but the advantage of the methodology here is that
it works without making any assumption on the form of that
distribution

Note: β is NOT the marginal odds ratio ( , SAS)
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Conditional Logistic Regression Example

2004 Odds (D/R) = 191/243 ; 2008 Odds (D/R) = 229/204 ; log
OR (2008 vs. 2004) = 0.35

Conditional logistic regression code below gives β = 1.22, p < 0.0001
(actually, exp(β) = 54/16)

McNemar test has p < 0.0001.
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SAS code

proc logistic ; proc freq ;
strata pair ; tables Y2004 * Y2008 / agree ;
model Vote(event = ’D’) = Year ; run ; run ;

Liang Li (MD Anderson Cancer Center) STAT 545 (Part II) Fall 2015 at Rice University 51 / 53



Fit Conditional Logistic Regression

logit[P(Yij = 1)] = αi + βTXit , t = 1, 2

Maximize the likelihood by treating αi as fixed parameters?

Maximize the likelihood by treating αi as random parameters
(effects)?

Eliminate all the αi ’s by using a conditional likelihood.
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A Few Notes on Fitting Conditional Logistic Regression

logit[P(Yij = 1)] = αi + βTXit , t = 1, 2

If Xit is the same for each subject, then β cannot be estimated with
this method. Example: Yit is the outcome at week 1 and week 4 after
surgery, and Xit is the intra-operative treatment.

When Xi1 = 0 and Xi2 = 1, the test of β = 0 is equivalent to
McNemar test. Also, it can be shown that exp(β) is estimated by
n12/n21 where n12 and n21 are off-diagonal counts in the McNemar

test table

Since the likelihood conditioned on the discordant pairs (Yi1 6= Yi2),
the concordant pairs (Yi1 = Yi2) are non-informative and thus can be
ignored (as in McNemar test). What is the intuition behind it?

An analog in the case of a continuous outcome and linear model with

random intercept.
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