
STAT 545 Generalized Linear Models and Categorical

Data Analysis: Part I

Instructor: Yisheng Li

1 Introduction: Distributions and Inference for Categori-

cal Data

1.1 Categorical Response Data

A categorical variable has a measurement scale consisting of a set of categories. It arises from

many different areas:

1. Social science: political philosophy is often measured as liberal, moderate, or conservative.

2. Biomedical sciences: Response Evaluation Criteria in Solid Tumors (RECIST) (for evalua-

tion of target lesions): complete response (CR), partial response (PR), stable disease (SD),

progressive disease (PD)

3. Behavioral sciences: smoking status: smoking vs abstinent; physical activity level: physically

active vs sedentary

4. Epidemiology, public health, genetics, education, marketing, engineering, and so on.

1.1.1 Response vs Explanatory Variables

Most statistical analyses distinguish between response (or dependent) variables and explanatory

(or independent) variables. For instance, typical regression models describe how the mean of a

response variable changes according to the values of explanatory variables.
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Examples:

1) A relationship between quality of life (QOL) (response) and disease stage (explanatory) and

marital status (explanatory).

2) Is social economic status (SES) (explanatory) related to the probability of success in smoking

cessation (response)?

This course focuses on categorical response variables, while explanatory variables are not re-

stricted to categorical variables (as in ordinary regression).

1.1.2 Nominal vs Ordinal Scale

Categorical variables have two primary types of scales. Variables having categories without a

natural ordering are called nominal.

Nominal: Race/ethnicity: White, Hispanic, Black (African American), Asian, etc.; mode of

transportation to work: automobile, bicycle, bus, subway, walk; choice of residence: apartment,

condominium, house, other.

For nominal variables, statistical analysis does not depend on the ordering of the categories.

Categorical variables having ordered categories are called ordinal variables:

Judgment of things: poor, fair, good, excellent

Frequency: never, rare, sometimes, often, always

Income (per annum): < 20K, ≥ 20K and < 40K, ≥ 40K and < 100K, ≥ 100K

Although categories of an ordinal variable are ordered, distances between categories are un-

known.

Statistical analysis for ordinal variables utilize the category ordering.

An interval variable is one that does have numerical distances between any two values. Ex-

amples: blood pressure, tumor size, gene expression level, actual income, number of cigarettes

smoked per day, etc.
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The way a variable is measured determines its classification as nominal, ordinal, or interval.

For example, income is an interval variable if it is measured as actual $; it becomes an ordinal

variable if it is measured as a range at each level (such as < 20K, ≥ 20K, etc., per annum).

Hierarchy of variable types: interval (highest), ordinal (next), nominal (lowest).

Statistical methods for one type of variables can be used with higher types of variables (by

ignoring certain information in the higher type of variable so that it is essentially treated as a

lower type variable). For example, ignoring the order in an ordinal variable, one could then apply

an analysis method for nominal variable on an ordinal variable.

1.1.3 Continuous vs Discrete Variables

Variables are categorized as continuous or discrete, according to the number of values they can

take. The continuous-discrete classification, in practice, distinguishes between variables that take

lots of values and variables that take few values. For instance, statisticians often treat discrete

interval variables having a large number of values (such as test scores) as continuous, using them

in methods for continuous responses.

This course deals with: 1) nominal variables; 2) ordinal variables; 3) discrete interval variables

having relatively few values; 4) continuous variables grouped into a small number of categories.

1.1.4 Quantitative vs Qualitative Variables

Nominal variables are qualitative.

Interval variables are quantitative.

Ordinal variables are unclear. However, ordinal variables possess important quantitative fea-

tures: 1) Each category has a greater or smaller magnitude of characteristic than another category;

2) Although not possible to measure, usually an underlying continuous variable is present. Given

the quantitative nature of ordinal variables, analysts often either assign numerical scores to cate-
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gories or assume an underlying continuous distribution (in the so-called latent variable models).

1.2 Distributions for Categorical Data

Data analysis generally requires assumption about the distribution of the data. For continuous

responses, the normal distribution plays the central role. For categorical responses, we have three

key distributions: binomial, multinomial, and Poisson.

1.2.1 Binomial Distribution

Suppose there are n independent trials. Each (Bernoulli) trial has an outcome of either success

or failure (i.e., Yi = 1 for a success and Yi = 0 for a failure). Assume the success probability is

P (Yi = 1) = π. Then the number of successes out of the n trials, denoted as Y =
∑

i Yi, follows a

binomial distribution, denoted as bin(n,π).

The probability mass function for the possible outcomes y for Y is

p(y) =
n!

y!(n− y)!
πy(1− π)n−y, y = 0, . . . , n.

The binomial distribution has mean and variance µ = E(Y ) = nπ and σ2 = var(Y ) = nπ(1−π).

The skewness is described by E(Y − µ)3/σ3 = (1− 2π)/
√
nπ(1− π). The distribution converges

to normality as n increases, for fixed π.

When the n Bernoulli trials are not independent, the number of successes out of the n trials

may not follow a binomial distribution. One example is hypergeometric distribution, arising when

each binary outcome is sampled from a finite population without replacement. Another example

is related to overdispersion (hopefully we can cover some related models on this later in the class).
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1.2.2 Multinomial Distribution

Some trials have more than two possible outcomes. Suppose that each of the n independent,

identical trials can have outcomes in any of c categories. Let Yij = 1 if trial i has outcome in

category j and Yij = 0 otherwise. Let nj =
∑

i Yij denote the number of trials having outcome in

category j. The counts (n1, n2, . . . , nc) have the multinomial distribution.

Let πj = P (Yij = 1) denote the probability of outcome in category j for each trial. The

multinomial probability mass function is

p(n1, n2, . . . , nc) =

(
n!

n1!n2! . . . nc!

)
πn1
1 π

n2
2 . . . πnc

c .

Since
∑

j nj = n, this is (c − 1)-dimensional, with nc = n − (n1 + . . . nc−1). The binomial

distribution is the special case with c = 2.

For the multinomial distribution,

E(nj) = nπj, var(nj) = nπj(1− πj), cov(nj, nk) = −nπjπk, if j 6= k.

The marginal distribution of each nj is binomial.

1.2.3 Poisson Distribution

The binomial and multinomial data result from a fixed number of trials. Sometimes the number

of trials may not be fixed (i.e., could be as large as you can imagine).

Example. Let y = the # of deaths due to automobile accidents on motorways in Italy during

this coming week. There is no fixed upper limit n for y. y must be nonnegative integers. The

simplest distribution with its probability mass on this range (i.e., nonnegative integers without

upper limit) is Poisson. Its probability mass function is

p(y) =
e−µµy

y!
, y = 0, 1, 2, . . .
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It satisfies E(Y ) = var(Y ) = µ. It is unimodal with mode equal to the integer part of µ. Its

skewness is described by E(Y − µ)3/σ3 = 1/
√
µ. The distribution approaches normality as µ

increases.

The Poisson distribution is used for counts of events that occur randomly over time or space,

when outcomes in disjoint periods or regions are independent. It also applies as an approximation

for the binomial when n is large and π is small, with µ = nπ.

Example. If each of the 50 million people driving in Italy next week is an independent

trial with probability 0.000002 of dying in a fatal accident that week, the # of deaths Y is a

bin(50000000,0.000002) variate, or approximately Poisson with µ = nπ = 50000000(0.000002) =

100.

A key feature of the Poisson distribution is that its variance equals its mean. That is, sample

counts vary more when their mean is higher.

1.2.4 Overdispersion

In practice, count observations often exhibit variability exceeding that predicted by the binomial

or Poisson. This phenomenon is called overdispersion.

We assumed above that each person has the same probability of dying in a fatal accident in

the next week. More realistically, these probabilities vary, due to factors such as amount of time

spent driving, whether the person wears a seat belt, and geographical location. Such variation

causes fatality counts to display more variation than predicted by the Poisson model.

Suppose Y is a random variable with variance var(Y | µ) for given µ, but µ is random (varying

based on the above described factors). Let θ = E(µ). Then we have

E(Y ) = E[E(Y | µ)], var(Y ) = E[var(Y | µ)] + var[E(Y | µ)].

In the case of Poisson random variable Y given µ, E(Y ) = θ and var(Y ) = θ + var(µ) > θ.
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Assuming a Poisson distribution for a count variable is often too simplistic, because of factors

that cause overdispersion. The negative binomial is a related distribution for count data that

permits the variance to exceed the mean.

Similar problems may arise for binomial (or multinomial) distributions. Suppose we want to

estimate the response rate of certain treatment for a certain type of cancer across the country. We

randomly sample 20 patients from each of 30 randomly sampled cancer hospitals in the country

and record the number of responses (e.g., complete responses), denoted as yi, at each hospital.

Due to factors that may differ between hospitals (e.g., skill level of physicians, general health

status of the patient population [related to race composition, socioeconomic status, etc.]) and

may not be measured, yi may exhibit a larger variability than a binomial random variable with a

fixed probability does (such as being clustered near 0 and 20 more). If time permits, later in this

course we will introduce models for this type of data (e.g., generalized linear mixed models).

1.2.5 Connection between Poisson and Multinomial Distributions

In Italy this next week, let y1 = # of people who die in automobile accidents, y2 = # who die

in airplane accidents, and y3 = # who die in railway accidents. A Poisson model for (Y1, Y2, Y3)

treats these as independent Poisson random variables, with parameters (µ1, µ2, µ3). The joint

probability mass function for {Yi} is the product of the three Poisson mass functions. The total

also has a Poisson distribution, with parameter
∑
µi.

With Poisson sampling the total count n is random. If we start with a Poisson model and then

condition on n, {Yi} no longer have Poisson distribution, since each Yi cannot exceed n. Given n,

Yi are also no longer independent, since the value of one affects the possible range for the others.

For c independent Poisson variates, with E(Yi) = µi, let us derive their conditional distribution

given that
∑
Yi = n. The conditional probability of a set of counts {ni} satisfying this condition
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is

P
[
(Y1 = n1, Y2 = n2, . . . , Yc = nc) |

∑
Yj = n

]
=
P (Y1 = n1, Y2 = n2, . . . , Yc = nc)

P (
∑
Yj = n)

=

∏
i [exp (−µi)µni

i /ni!]

exp (−
∑
µj) (

∑
µj)

n /n!
=

n!∏
i ni!

∏
πni
i ,

where {πi = µi/ (
∑
µj)}. This is the multinomial (n, {

∑
µj}) distribution, characterized by the

sample size n and the probabilities {πi}.

Many categorical data analyses assume a multinomial distribution. Such analyses usually have

the same parameter estimates as those of analyses assuming a Poisson distribution, because of

the similarity in the likelihood functions. We will see examples of this later in the Chapter of

Inference for Two-Way Contingency Tables.

1.3 Statistical Inference for Categorical Data

The choice of distribution for the response variable is only the first step in data analysis. In

practice, that distribution has unknown parameter values. We review methods of using sample

data to make inference about the parameters.

1.3.1 Likelihood Functions and Maximum Likelihood Estimation

Throughout the first half of the course, we use maximum likelihood (ML) for parameter estimation.

Under regularity conditions, such as the parameter space having fixed dimension with true value

falling in its interior, maximum likelihood estimators have desirable properties: They have large-

sample normal distributions; they are asymptotically consistent, converging to the parameter as n

increases; and they are asymptotically efficient, producing large-sample standard errors no greater

than those from other estimation methods.
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Given the data, for a chosen probability distribution the likelihood function is the probability

of those data, treated as a function of the unknown parameter. The ML estimate is the parameter

value that maximizes this function. This is the parameter value under which the data observed

have the highest probability of occurrence. The parameter value that maximizes the likelihood

function also maximizes the log of that function. It is simpler to maximize the log likelihood since

it is a sum rather than a product of terms.

We denote a parameter for a generic problem by β and its ML estimate by β̂. The likelihood

function is l(β) and the log-likelihood function is L(β) = log [l(β)]. For many models, L(β) has

concave shape and β̂ is the point at which the derivative equals 0. The ML estimate is then the

solution of the likelihood equation, ∂L(β)/∂β = 0. Often β is multidimensional, denoted by β,

and β̂ is the solution of a set of likelihood equations.

Let SE denote the standard error of β̂, and let cov(β̂) denote the asymptotic covariance

matrix of β̂. Under regularity conditions, cov(β̂) is the inverse of the information matrix. The

(j, k) element of the information matrix is

− E
(
∂2L(β)

∂βjβk

)
. (1)

The standard errors are the square roots of the diagonal elements for the inverse information

matrix. The greater the curvature of the log likelihood, the smaller the standard errors. This is

reasonable, since large curvature implies that the log likelihood drops quickly as β moves away

from β̂; hence, the data would have been much more likely to occur if β took a value near β̂ rather

than a value far from β̂.

1.3.2 Likelihood Function and ML Estimate for Binomial Parameter

The part of the likelihood function involving the parameters is called the kernel. Since the maxi-

mization of the likelihood is with respect to the parameters, the rest is irrelevant.
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The binomial log likelihood (ignoring the coefficient

 n

y

, which does not depend on the

parameter) is then

L(π) = log
[
πy(1− π)n−y

]
= y log(π) + (n− y) log(1− π). (2)

Differentiating with respect to π yields

∂L(π)/∂π = y/π(n− y)/(1− π)− (y − nπ)/[π(1− π)]. (3)

Equating this to 0 gives the likelihood equation, which has solution π̂ = y/n, the sample proportion

of successes for the n trials.

Calculating ∂2L(π)/∂π2, taking the expectation, and combining terms, we get

− E
[
∂2L(π)/∂π2

]
= E

[
y/π2 + (n− y)/(1− π)2

]
= n/ [π(1− π)] . (4)

Thus, the asymptotic variance of π̂ is π(1 − π)/n. This is also expected, since E(Y ) = nπ and

var(Y ) = nπ(1− π), π̂ = Y/n has mean and standard error

E(π̂) = π, σ(π̂) =

√
π(1− π)

n
.

1.3.3 Wald-Likelihood Ratio-Score Test Triad

Three standard ways exist to use the likelihood function to perform large-sample inference. We

introduce these for a significance test of a null hypothesis H0 : β = β0 and then discuss their

relation to interval estimation. They all exploit the large-sample normality of ML estimators.

Wald test. With nonnull standard error SE of β̂, the test statistic

z =
(
β̂ − β0

)
/SE

has an approximate standard normal distribution when β = β0. This type of statistic, using the

nonnull standard error, is called a Wald statistic.
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The multivariate extension for the Wald test of H0 : β = β0 has test statistic

W = (β̂ − β0)
′
[
cov
(
β̂
)]−1

(β̂ − β0).

(The prime denotes the transpose.) The nonnull covariance is based on the curvature (1) of the

log likelihood evaluated at β̂. The asymptotic multivariate normal distribution for β̂ implies an

asymptotic chi-squared distribution for W . The df equals the rank of cov(β̂), which is the number

of nonredundant parameters in β.

Likelihood-ratio test. The likelihood ratio test uses the likelihood function through the

ratio of two maximizations: 1) the maximum over the possible parameter values under H0, and 2)

the maximum over the larger set of parameter values under H0 ∪Ha, where Ha is an alternative

hypothesis.

Let l0 and l1 denote the maximized values of the likelihood function under H0 and H0 ∪ Ha,

respectively. Wilks (1935, 1938) show that −2 log Λ, where Λ = l0/l1, has an asymptotic chi-

squared distribution with df = difference in the dimension of the parameter space under H0 ∪Ha

and under H0, as n→∞. The likelihood-ratio test statistic equals

−2 log Λ = −2 log (l0/l1) = −2(L0 − L1),

where L0 and L1 denote the maximized log likelihood functions.

For example, suppose β = (β0,β1)
′ and H0 : β0 = 0. Then l1 is the likelihood function

calculated at the β value for which the data would have been most likely; l0 is the likelihood

function calculated at the β1 value for which the data would have been most likely, assuming

β0 = 0. Therefore, l1 is always at least as large as l0, and the likelihood ratio test statistic is

always nonnegative.

Score test. The score statistic is due to R. A. Fisher and C. R. Rao. The score test is based

on the slope and expected curvature of the log-likelihood function L(β) at the null value β0. It
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uses the value of the score function

u(β) = ∂L(β)/∂β,

evaluated at β0. The value u(β0) tends to be larger in absolute value when β̂ is farther from β0.

Denote −E [∂2L(β)/∂β2] (i.e., the information) evaluated at β0 by i(β0). The score statistic is

the ratio of u(β0) to its null SE, which is [i(β0)]
1/2. This has an asymptotic standard normal null

distribution. The chi-squared form of the score statistic is

[u(β0)]
2

i(β0)
=

[∂L(β)/∂β |β=β0 ]
2

−E [∂2L(β)/∂β2 |β=β0 ]
.

In the multiparameter case, the score statistic is a quadratic form based on the vector of par-

tial derivatives of the log likelihood with respect to β and the inverse information matrix, both

evaluated at the ML estimates of β under H0 (a special case of which is β = β0).

Geometric illustration of the three tests in the univariate case for H0 : β = 0. The Wald test

uses the behavior of L(β) at the ML estimate β̂, having chi-squared form
[
β̂/SE

]2
. The score

test is based on the slope and curvature of L(β) at β = 0. The likelihood-ratio test combines

information about L(β) at both β̂ and β = 0. It compares the log-likelihood values L1 at β̂ and

L0 at β0 = 0 using the chi-squared statistic −2(L0 − L1). In a sense, this statistic uses the most

information of the three types of test statistic.

As n → ∞, the Wald, likelihood-ratio, and score tests have certain asymptotic equivalences.

For small to moderate sample sizes, the likelihood-ratio test is usually more reliable than the Wald

test.

1.3.4 Constructing Confidence Intervals

In practice, it is more informative to construct confidence intervals for parameters than to test

hypotheses about their values. For any of the three test methods, a confidence interval results
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from inverting the test. For example, a 95% confidence interval for β is the set of β0 for which the

test of H0 : β = β0 has a p-value exceeding 0.05.

Let zα denote the z-score from the standard normal distribution having right-tailed probability

α; this is the 100(1−α) percentile of that distribution. Let χ2
df (α) denote the 100(1−α) percentile

of the chi-squared distribution with degrees of freedom df.

The Wald confidence interval is the set of β0 for which |β̂ − β0|/SE < zα/2. This gives the

interval β̂ ± zα/2SE. The likelihood-ratio-based confidence interval is the set of β0 for which

−2[L(β0 − L(β̂)] < χ2
1(α). [Recall that χ2

1(α) = z2α/2.] The score confidence interval can be

constructed similarly.

Note that all three tests are based on asymptotic null distributions. In small samples or

moderate or large samples when a model contains many parameters, β̂ may be far from normality.

In that case, inference (hypothesis test or confidence interval) made by the Wald and likelihood-

ratio tests can be very different. In many cases, an exact small-sample distribution of a test

statistic may exist so that we do not have to rely on the large-sample normality to make inference.

In other cases, higher-order asymptotic methods may be available.

Despite that the Wald confidence interval is less reliable when the sample size is small to

moderate, it is the most commonly used approach in practice, mainly because of its simplicity

in construction. It appears that nowadays more and more statistical software packages produce

likelihood-ratio-based confidence intervals. The LR-based interval is preferable for categorical data

with small to moderate sample sizes.

For the linear regression model assuming a normal response, all three types of tests/confidence

intervals are identical.
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1.4 Statistical Inference for Binomial Parameters

We illustrate inference methods for categorical data by presenting tests and confidence intervals

fro the binomial parameter π, based on y successes in n independent trials.

1.4.1 Tests about a Binomial Parameter

Consider H0 : π = π0. Since H0 has a single parameter, we use the normal rather than chi-squared

forms of Wald and score test statistics. This allows us to test against one-sided as well as two-sided

alternatives.

The Wald statistic is

zW =
π̂ − π0

SE
=

π̂ − π0√
π̂(1− π̂)/n

,

where π̂ = y/n is the ML estimate of π.

Evaluating the binomial score (3) and information (4) at π0 yields

u(π0) =
y

n
− n− y

1− π0
, i(π0) =

n

π0(1− π0)
.

The normal form of the score statistic is therefore

zS =
u(π0)

[i(π0)]
1/2

=
y − nπ0√
nπ0(1− π0)

=
π̂ − π0√

π0(1− π0)/n
. (5)

The Wald statistic zW uses the standard error evaluated at π̂, the score statistic zS uses it evaluated

at π0. The score statistic is preferable, as it uses the actual null SE rather than an estimate. Its

null sampling distribution is closer to standard normal than that of the Wald statistic.

The binomial log-likelihood function (2) equals L0 = y log π0 + (n − y) log (1− π0) under H0

and L1 = y log π̂ + (n− y) log (1− π̂) under H0 ∪Ha. The likelihood ratio statistic simplifies to

−2(L0 − L1) = 2

(
y log

π̂

π0
+ (n− y) log

1− π̂
1− π0

)
.

Rewritten as

−2(L0 − L1) = 2

(
y log

y

nπ0
+ (n− y) log

n− y
n− nπ0

)
,
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it compares observed success and failure counts to fitted (i.e., null) counts by

2
∑

observed log
observed

fitted
. (6)

We will see that this formula also holds for tests about Poisson and multinomial parameters. (6)

has an asymptotic chi-squared distribution with df = 1.

1.4.2 Confidence Intervals for a Binomial Parameter

A significance test merely indicates whether a particular π value (such as π = 0.5) is plausible.

We learn more by using a confidence interval to determine the range of plausible values.

Inverting the Wald test statistic gives the interval of π0 values for which |zW | < zα/2, or

π̂ ± zα/2

√
π̂(1− π̂)

n
. (7)

Unfortunately, the performance of this confidence interval is not satisfactory: 1) It is poor when

n is not very large; 2) The coverage probability usually falls below the nominal confidence level;

3) The coverage probability is particularly poor when the true parameter is near 0 or 1. A simple

adjustment that adds 1/2z2α/2 observations of each type (success and failure) to the sample before

using the formula performs much better.

The score confidence interval contains π0 values for which |zS| < zα/2. Its endpoints are the π0

solutions to the equations

(π̂ − π0)
√
π0(1− π0)/n = ±zα/2.

This interval is

π̂

(
n

n+ z2α/2

)
+

1

2

(
z2α/2

n+ z2α/2

)

±zα/2

√√√√ 1

n+ z2α/2

[
π̂(1− π̂)

(
n

n+ z2α/2

)
+

(
1

2

)(
1

2

)(
z2α/2

n+ z2α/2

)]
.
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The midpoint π̃ of the interval is π̃ = (y+ z2α/2)/(n+ zα/2), a weighted average of π̂ and 1/2, with

the weight n/(n + z2α/2) for π̂ increases as n increases. The square of the coefficient of zα/2 is a

weighted average of the variance of a sample proportion when π = π̂ and the variance of a sample

proportion when π = 1/2, using the adjusted sample size n+ zα) in place of n. This interval has

much better performance than the Wald interval.

The likelihood-ratio-based confidence interval is more complex computationally, but simple

in principle. It is the set of π0 for which the likelihood ratio test has a p-value exceeding α.

Equivalently, it is the set of π0 for which double the log likelihood drops by less than χ2
1(α) from

its value at the ML estimate π̂ = y/n.

In-class Exercise Example. Suppose we tossed a coin 10 times and observed 3 heads and 7

tails. We want to test H0 : π = 0.5, where π is the probability of head. We also want to construct

95% confidence intervals for π.

1.5 Statistical Inference for Multinomial Parameters

We consider inference for multinomial parameters {πj}. We assume of n observations, nj occur in

category j, j = 1, . . . , c.

1.5.1 Estimation of Multinomial Parameters

Recall the multinomial probability mass function

p(n1, n2, . . . , nc) =

(
n!

n1!n2! . . . nc!

)
πn1
1 π

n2
2 . . . πnc

c . (8)

We derive ML estimates of {πj}. (8) is proportional to the kernel

∏
j

π
nj

j where all πj ≥ 0 and
∑
j

πj = 1. (9)

The ML estimates are the {πj} that maximize (9).
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The multinomial log-likelihood function is

L(π) =
∑
j

nj log πj.

Since
∑c

j=1 πj = 1, L is a function of (π1, . . . , πc−1). Also, ∂πc/∂πj = −1, j = 1, . . . , c− 1.

Since

∂ log πc
∂πj

=
1

πc

∂πc
∂πj

= − 1

πc
,

differentiating L(π) with respect to πj gives the likelihood equation

∂L(π)

∂πj
=
nj
πj
− nc
πc

= 0.

The ML solution satisfies π̂j/π̂c = nj/nc. Since the ML solution should also satisfy
∑c

j=1 π̂j = 1,

we have ∑
j

π̂j = 1 =
π̂c

(∑
j nj

)
nc

=
π̂cn

nc
.

Thus, π̂c = nc/n and then π̂j = nj/n. Based on further mathematical arguments (not presented

here), this solution does maximize the likelihood. Thus, the ML estimates of {πj} are the sample

proportions.

1.5.2 Pearson Statistics for Testing a Specified Multinomial

Assume a multinomial distribution of {ni : i = 1, . . . , c}.

Test H0 : πi = πi0, where πi0 are known, and
∑
πi0 =

∑
πi = 1.

Pearson test statistic:

X2 =
∑
i

(ni −mi)
2

mi

,

where mi = nπi0. A statistic of this form is called a Pearson chi-squared statistic.

Under H0, X
2 L→ X 2

c−1, as n→∞.

Example: Suppose we throw a dice 50 times, and obtain 10 1’s, 8 2’s, 5 3’s, 6 4’s 13 5’s, 8 6’s.

Test whether this dice is fair (i.e., proportion of each of 1-6 is 1/6).
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H0 : π1 = . . . = π6 = 1/6.

n1 = 10, n2 = 8, n3 = 5, n4 = 6, n5 = 13, n6 = 8, n = 50. Under H0, m1 = . . . = m6 = 25/3.

X2 = (10−25/3)2
25/3

+ (8−25/3)2
25/3

+ (5−25/3)2
25/3

+ (6−25/3)2
25/3

+ (13−25/3)2
25/3

+ (8−25/3)2
25/3

= 4.96. P-value = .42.

We cannot reject the null hypothesis of πj = 1/6 at α = 0.05.

1.5.3 Chi-Squared Theoretical Justification

Recall that we assumed a multinomial distribution for {ni : i = 1, . . . , c}. Let π̂ = (n1/n, . . . , nc−1/n)′

and π0 = (π10, . . . , πc−1,0)
′. One can show the following:

1.
√
n(π̂ − π0)

L→ N(0,Σ0), where element σij of Σ0 satisfies σij = −πiπj, if i 6= j, and

σij = πi(1− πi), if i = j (based on multivariate central limit theorem).

2. Σ−10 has the (i, j)th element equal to 1/πc0 if i 6= j, and (1/πi0 + 1/πc0) if i = j (verify this

by showing Σ0Σ
−1
0 = I).

3. n(π̂ − π0)
′Σ−10 (π̂ − π0) simplifies to X2.

Since
√
nΣ
−1/2
0 (π̂ − π0) has an asymptotic (c− 1)-dimensional standard multivariate normal

distribution, n(π̂ − π0)
′Σ−10 (π̂ − π0) (or X2) has an asymptotic chi-squared distribution with df

= c− 1.

1.5.4 Likelihood-Ratio Chi-Squared

An alternative test for multinomial parameters uses the likelihood-ratio test. Recall the kernel of

the multinomial likelihood (9).

Under H0 the likelihood is maximized when π̂j = πj0. In the general case, it is maximized

when π̂j = nj/n. The ratio of the likelihoods equals

Λ =

∏
j (πj0)

nj∏
j (nj/n)nj

.
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Thus the likelihood-ratio statistic, denoted by G2, is

G2 = −2 log Λ = 2
∑

nj log (nj/nπj0). (10)

This statistic, which has form (6), is called the likelihood-ratio chi-squared statistic. The larger

the value of G2, the greater the evidence against H0.

In the general case, the parameter space consists of {πj} subject to
∑

j πj = 1, so the di-

mensionality is c − 1. Under H0, the {πj} are specified completely, so the dimension is 0. The

difference in these dimensions equals c − 1. For large n, G2 has a chi-squared null distribution

with df = c− 1.

When H0 holds, the Pearson X2 and the likelihood ratio G2 both have asymptotic chi-squared

distributions with df = c−1. In fact, they are asymptotically equivalent in that case; specifically,

X2 − G2 converges in probability to 0. When H0 is false, they tend to grow proportionally to n;

they need not take similar values, however, even for very large n.

For fixed c, the distribution of X2 usually converges to chi-squared more quickly than that of

G2. The chi-squared approximation is usually poor for G2 when n/c < 5. When c is large, it can

be decent for X2 for n/c as small as 1 if the table does not contain both very small and moderately

large expected frequencies.

1.5.5 Testing with Estimated Expected Frequencies

What if H0 is not a known set of parameters?

Suppose H0 involves a small set of (say t) parameters as compared to the full set of c − 1

parameters. Then we can use the MLEs of mi to replace the mi’s in X2. The resulting test

statistic then follows a X 2
c−1−t distribution under H0.

Example: A sample of 156 dairy calves born in Okeechobee County, Florida, were classified

according to whether they caught pneumonia within 60 days after birth. Calves that got a pneu-

monia infection were also classified according to whether they got a secondary infection within
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two weeks after the first infection cleared up. Note there would not be a secondary infection if

there was not a primary one.

Primary and Secondary Pneumonia Infections of Calves?

Secondary Infection

Primary Infection Yes No

Yes 30 (38.1) 60 (39.0)

No 0 (−) 63 (78.9)

? Values in parentheses are estimated expected frequencies.

This is a multinomial sample with positive probabilities for cells (yes, yes), (yes, no) and (no,

no) only. The probability for a calf to fall in cell (no, yes) (or (2,1)) is 0. Such a cell is called a

structural zero.

Probability Structure in the General Case

Secondary Infection

Primary Infection Yes No Total

Yes π11 π12 π11 + π12

No − π22 π22

where π11 + π12 + π22 = 1.

We want to test whether the probability of primary infection was the same as the conditional

probability of secondary infection, given that the calf got the primary infection, or test

H0 : π11 + π12 = π11/(π11 + π12)

(equivalent to π11 = (π11 + π12)
2). Let π = π11 + π12, the probability of the primary infection. An

alternative notation for the cell probabilities under H0 therefore is (π2, π(1− π), 1− π).
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Probability Structure Under H0

Secondary Infection

Primary Infection Yes No Total

Yes π2 π(1− π) π

No − 1− π 1− π

In order to compute X2, we need to find the ML estimates of the expected frequencies (or

equivalently, the cell probabilities) under H0.

Sample Version

Secondary Infection

Primary Infection Yes No Total

Yes n11 n12 n11 + n12

No − n22 n22

Kernel of the likelihood:

l = (π2)n11(π − π2)n12(1− π)n22

Log likelihood:

L = n11 log(π2) + n12 log(π − π2) + n22 log(1− π).

Solving the likelihood equation, we get

π̂ = (2n11 + n12)/(2n11 + 2n12 + n22).

Therefore, the expected frequencies under H0 are (recall n = n11 + n12 + n22 = 156) m̂11 = nπ̂2 =

38.1, m̂12 = n(π̂ − π̂2)2 = 39.0, and m̂22 = n(1− π̂) = 78.9.

One can then compute the Pearson chi-squared statistic for testing H0, which turns out to be

X2 = 19.7 with df = c− 1− t = 3− 1− 1 = 1. P-value < 1e− 5. There is strong evidence against

the null hypothesis. The researchers concluded that the primary infection had an immunizing

effect that reduced the likelihood of a secondary infection.
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2 Describing Contingency Tables

We introduce tables that display relationships between categorical variables. We also define pa-

rameters that summarize their association.

2.1 Probability Structure of Contingency Tables

The joint distribution between two categorical variables determines their relationship. This dis-

tribution also determines the marginal and conditional distributions.

2.1.1 Joint, Marginal and Conditional Distributions

Let X & Y denote two categorical variables, X having I levels, and Y having J levels. There

are IJ possible bivariate outcomes. Because X & Y are discrete, the joint distribution can be

displayed in a rectangular table:

Y

X 1 . . . J Total

1 π11 . . . π1J π1+

(π1|1) . . . (πJ |1) (1.0)

. . . . . . .

. . . . . . .

. . . . . . .

I πI1 . . . πIJ πI+

(π1|I) . . . (πJ |I) (1.0)

Total π+1 . . . π+J 1.0

where πij = P (X = i, Y = j), IJ − 1 independent parameters.
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When the cells contain frequency counts of the outcomes, the table is called a contingency

table. A contingency table having I rows and J columns is called an I × J (I-by-J) table:

Y

X 1 . . . J Total

1 n11 . . . n1J n1+

. . . . . . .

. . . . . . .

. . . . . . .

I nI1 . . . nIJ nI+

Total n+1 . . . n+J n

Marginal distributions:

πi+ =
J∑
j=1

πij, π+j =
I∑
i=1

πij

– row and column totals obtained by summing the joint probabilities. Subscript “+” denotes the

sum over the index it replaces.

Conditional distributions:

Often, in a contingency table, one (e.g., Y ) is considered a response variable & the other (X)

is considered an explanatory variable. In that case, we can define conditional probabilities:

πj|i = πij/πi+,
J∑
j=1

πj|i = 1.

2.1.2 Independence

πij = πi+π+j, i = 1, . . . , I, j = 1, . . . , J.

There are I + J − 2(= (I − 1) + (J − 1)) parameters. Also,

πj|i = πij/πi+ = πi+π+j/πi+ = π+j, j = 1, . . . , I, (11)

23



meaning that each conditional distribution of Y is identical to the marginal distribution of Y , or

equivalently, probability of column response j is the same in each row. When Y is response, (11)

provides a more natural definition of independence.

We use similar notations for the sample distributions:

Cell frequencies (sample joint distribution): nij(pij)

Row totals: ni+(pi+)

Column totals: n+j(p+j)

Total: n =
∑

i

∑
j nij

We have pij = nij/n, pi+ = ni+/n, p+j = n+j/n, pj|i = nij/ni+.

2.1.3 Sensitivity and Specificity in Diagnostic Tests

A diagnostic test is often used to detect whether an individual has certain disease condition. Let

X be the true disease status of an individual, with X = 1: diseased, X = 2: not diseased. Let Y

be the outcome of a diagnostic test with Y = 1: positive, Y = 2: negative.

Important questions of interest include P (X = 1 | Y = 1) & P (X = 2 | Y = 2). Two important

parameters to describe whether a diagnostic test is good or not:

P (Y = 1 | X = 1) or π1|1 — sensitivity

P (Y = 2 | X = 2) or π2|2 — specificity.

Further let ρ denote the probability that a subject has the disease.

Exercise:

a) Calculate P (X = 1 | Y = 1) using Bayes Theorem.

Bayes Theorem: X ∼ P (X), Y | X ∼ P (Y | X), then P (X | Y ) = P (X)P (Y | X)/P (Y ).

P (X = 1 | Y = 1) = P (X = 1 & Y = 1)/P (Y = 1) = π1|1ρ/[π1|1ρ + π1|2(1 − ρ)], where

π1|2 = 1− π2|2.
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b) Suppose π1|1 = π2|2 = 0.95 and ρ = 0.005. Calculate P (X = 1 | Y = 1).

P (X = 1 | Y = 1) = .95 ∗ .005/(.95 ∗ .005 + (1− .95) ∗ (1− .005)) = .08715596 ≈ .087.

c) Calculate πij, i = 1, 2, j = 1, 2, and interpret the result in b).

π11 = P (X = 1)π1|1 = ρπ1|1 = 0.005 ∗ .95 = .00475;

π12 = ρ− π11 = .005− .00475 = .00025;

π21 = P (X = 2)π1|2 = (1− ρ)(1− π2|2) = (1− 0.005) ∗ (1− .95) = .04975;

π22 = P (X = 2)− π21 = 1− ρ− π21 = 1− .005− .04975 = .94525.

We thus obtain the following table for the joint distribution of X and Y :

Y

X 1 2 Total

1 .00475 .00025 .005

(.95) (.05) (1.0)

2 .04975 .94525 .995

(.05) (.95) (1.0)

Total .545 .9455 1.0

A take-home message from this example: For a rare disease, even if a diagnostic test has both

high sensitivity and specificity, the probability of disease for a person who is diagnosed as positive

is still low.

2.2 Compare Proportions in 2× 2 Tables

2.2.1 Difference of Proportions

π1|h − π1|i (= π2|i − π2|h) – between-row comparisons. For an I × J table, independence iff all

differences are 0.

If both variables are response variables, we can also compare:
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1) P (row 1 | col 1)− P (row 1 | col 2) = π11/π+1 − π12/π+2;

2) P (col 1 | row 1)− P (col 1 | row 2) = π11/π1+ − π21/π2+;

These two differences of proportion are generally different.

2.2.2 Relative Risk

For 2× 2 tables, the relative risk is the ratio π1|1/π1|2.

Independence iff π1|1/π1|2 = 1.

Comparison on the second response gives a different relative risk: π2|1/π2|2 = (1−π1|1)/(1−π1|2).

2.2.3 Odds Ratio

Again consider a 2× 2 table.

Odds 1: Ω1 = π1|1/π2|1

Odds 2: Ω2 = π1|2/π2|2

Interpretation of Ω1 = 3: In the first row, the odds of the response being in the first column is

three times the odds of the response being in the second column.

Odds ratio: θ = Ω1/Ω2 = π11π22/ (π12π21).

Assuming all πij > 0, then independence iff θ = 1.

If θ > 1, subjects in row 1 are more likely to make response 1 than are subjects in row 2; i.e.,

π1|1 > π1|2 (but note θ 6= π1|1/π1|2).

If 0 < θ < 1, π1|1 < π1|2.

If one πij = 0, then θ = 0 or ∞.

Properties:

1) Odds ratio θ does not change with the orientation of the table.

2) When the order of the rows or columns is reversed, new θ is the inverse of the original value,

which represents the same level of association between X and Y , but in the opposite direction.
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Sample version of θ: invariant to multiplication within rows/columns and row/column inter-

change.

Example: Cross-Classification of Aspirin Use and Myocardial Infarction

Myocardial Infarction

Fatal Attack Non-Fatal Attack No Attack

Placebo 18 171 10, 845

Aspirin 5 99 10, 933

Collapsing fatal and non-fatal attacks:

Myocardial Infarction

Attack No Attack

Placebo 189 10, 845

Aspirin 104 10, 933

Sample difference of proportion of attack between aspirin usage: (18+171)/(18+171+10845)−

(5 + 99)/(5 + 99 + 10933) = .0171− .0094 = .0077.

The relative risk is .0171/.0094 = 1.82.

Interpretation: The proportion suffering heart attacks for those taking placebo was 1.82 times

the proportion for those taking aspirin.

The sample odds ratio is

189× 10933

10845× 104
= 1.83.

Interpretation: The odds of suffering heart attacks for those taking placebo was 1.83 times the

odds for those taking aspirin.
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2.2.4 Relationship between Relative Risk and Odds Ratio

Odds ratio = relative risk ×1−π1|2
1−π1|1

.

When both π1|1 and π1|2 are small, odds ratio ≈ relative risk (e.g., for rare diseases).

Property: |odds ratio− 1| > |relative risk− 1| if X and Y are not independent.

Why?

|OR− 1| =
∣∣∣∣π11π22π12π21

− 1

∣∣∣∣ =

∣∣∣∣π11π22 − π12π21π12π21

∣∣∣∣ ,
|RR− 1| =

∣∣∣∣π11/ (π11 + π12)

π21/ (π21 + π22)
− 1

∣∣∣∣ =

∣∣∣∣π11 (π21 + π22)

(π11 + π12)π21
− 1

∣∣∣∣ =

∣∣∣∣π11π22 − π12π21(π11 + π12) π21

∣∣∣∣
Thus, |OR− 1| > |RR− 1| when X and Y are not independent (assuming π11 6= 0).

2.2.5 Odds Ratio for I × J Tables

πacπbd
πadπbc

I(I − 1)/2× J(J − 1)/2 of these, redundant.

A minimal set of odds ratios:

πi,jπi+1,j+1

πi,j+1πi+1,j

Another minimal set of odds ratios:

πijπIJ
πIjπiJ

,

i = 1, . . . , I − 1, j = 1, . . . , J − 1.

When πi+ and π+j, i = 1, . . . , I, j = 1, . . . , J are known, the minimal set of odds ratios

determine the joint probabilities (and vise versa). In this sense, (I − 1)(J − 1) parameters can

describe any association in an I × J table (conditional on the marginal probabilities).
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2.3 Summary Measures of Association

2× 2 vs I × J tables.

Full joint distribution vs model building vs summary measures of association.

2.3.1 Measures of Ordinal Association

Interval vs ordinal vs nominal variables

Quantitative vs qualitative variables

Interval variables: Pearson correlation

Monotonicity – Does Y tend to increase as X increases?

Concordant vs discordant pairs in a contingency table:

Concordant, if the subject ranking higher on variable X also ranks higher on variable Y .

Discordant, if the subject ranking higher on variable X ranks lower on variable Y .

Tied, if the subjects have the same classification (or ranking) on X and/or Y .

Lymph node localization example: A study of lymphatic mapping and localization of lymph

nodes using fluorescence sodium vs technetium Tc 99m sulfur colloid radioactivity. Concordance

is the primary efficacy endpoint of the study.

Job satisfaction example

Cross-classification of job satisfaction by income
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Job Satisfaction

Very Little Moderately Very

Income (US$) Dissatisfied Dissatisfied Satisfied Satisfied

< 6000 20 24 80 82

6000− 15000 22 38 104 125

15000− 25000 13 28 81 113

> 25000 7 18 54 92

Concordant, discordant pairs in this example.

Total # of concordant pairs, denoted as C, equals 20× (38 + 104 + 125 + 28 + . . .+ 92) + 24×

(104 + 125 + . . .+ 92) + . . . = 109, 520.

Total # of discordant pairs, denoted as D, equals 24 × (22 + 13 + 7) + 80 × (22 + 38 + 13 +

. . .+ 18) + . . . = 84, 915.

C > D suggests a tendency for low income to occur with low job satisfaction and high income

with high job satisfaction.

Can we calculate the probability of concordance and discordance for two independent obser-

vations?

Πc = 2
∑
i

∑
j

πij(
∑
h>i

∑
k>j

πhk)

Πd = 2
∑
i

∑
j

πij(
∑
h>i

∑
k<j

πhk)

Several measures of association utilize the difference Πc−Πd. If Πc > Πd, association positive;

if Πc < Πd, association negative.

2.3.2 Gamma

For a pair of subjects, define

γ =
Πc − Πd

Πc + Πd

.
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What is the interpretation of γ?

P(concordance | the pair is untied) - P(discordance | the pair is untied)

Sample version of gamma: γ̂ = C−D
C+D

.

For 2× 2 tables, γ simplifies to

Q =
π11π22 − π12π21
π11π22 + π12π21

=
θ − 1

θ + 1
,

where θ is the OR.

2.3.3 Measures of Nominal Association

For interval variables, R-squared, intraclass correlation coefficient, etc., describe the proportional

reduction in variance from the marginal distribution to the conditional distributions of the re-

sponse.

V (Y ): a measure of variation for the marginal distribution {π+1, . . . , π+J} of the response Y

V (Y | i): the same measure computed for the conditional distribution {π+1|i, . . . , π+J |i} at the

ith setting of an explanatory variable X. For a categorical X, E[V (Y | X)] =
∑

i πi+V (Y | i).

A measure of proportional reduction in variation:

V (Y )− E[V (Y | X)]

V (Y )

2.3.4 Concentration and Uncertainty Measures

One variation measure: V (Y ) =
∑
π+j(1− π+j) = 1−

∑
π2
+j.

Minimum: 0, when π+j = 1 for some j.

Maximum: (J − 1)/J when π+j = 1/J for all j.

The conditional variation in row i is V (Y | i) = 1−
∑
π2
+j|i.

For an I × J table,

E[V (Y | X)] = 1−
∑
i

πi+
∑
j

π2
j|i = 1−

∑∑
π2
ijπi+.
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The proportional reduction in variation is Goodman and Kruskal’s tau

τ =

∑
i

∑
j π

2
ij/πi+ −

∑
j π

2
+j

1−
∑

j π
2
+j

,

also called the concentration coefficient.

Interpretation of τ :

Proportional prediction rule: with probability π+j guess response to be in category j. Then

V (Y ) =
∑

π+j(1− π+j) = P (guess j)× P (wrong guess | guess j)

is the probability of an incorrect guess.

V (Y | i): the probability of an incorrect guess given we know that a subject is in category i of

X.

E[V (Y | X)]: averaged over the distribution of X

A large τ represents a strong association, in the sense that we can guess Y much better when

we know X than when we do not.

An alternative variation measure (Theil, 1970): V (Y ) =
∑
π+j log π+j, called the entropy. For

contingency tables, this results in the proportional reduction in variation index

U = −
∑

i

∑
j πij log(πij/πi+π+j)∑
j π+j log π+j

,

called the uncertainty coefficient.

Properties:

1) Both τ and U are well defined as long as some π+j > 0;

2) 0 ≤ τ ≤ 1, 0 ≤ U ≤ 1

3) τ = U = 0 is equivalent to independence of X and Y ;

4) τ = U = 1 is equivalent to no conditional variation, in the sense that for each i, πj|i = 1 for

some j.

Variation measure used in τ : Gini concentration
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Variation measure used in U : entropy

Note: τ and U tend to decrease with an increase of the number of response categories. But in

general, a large value constitutes a “strong” association.

Religious identification example

Religious Identification Now and at Age 16

Religious

Identification Current Religious Identification

at Age 16 Protestant Catholic Jewish None or other Total

Protestant 918 27 1 70 1016

Catholic 30 351 0 37 418

Jewish 1 1 28 1 31

None or other 29 5 0 25 59

Total 978 384 29 133 1524

The sample version of Goodman and Kruskal’s tau equals 0.57.

The sample version of the uncertainty coefficient is 0.51.

There seems to be relatively strong association between religious identification now and at age

16.

3 Inference for Two-Way Contingency Tables

Most inferential methods for categorical data assume multinomial or Poisson sampling models.
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3.1 Sampling Distributions

Suppose {ni, i = 1, . . . , c} are observed counts in the c cells of a contingency table (for an I × J

table, c = IJ). Denote by mi = E(ni) the corresponding expected frequencies.

3.1.1 Poisson Sampling

The probability mass function

exp(−mi)m
ni
i

ni!
, ni = 0, 1, 2, . . .

Var(ni) = E(ni) = mi.

The counts observed in different cells are assumed independent.

For example, n1 = # of spontaneous abortions, n2 = # of induced abortions, n3 = # of live

births, measured in November, 1990 in London, England.

3.1.2 Multinomial Sampling

Poisson sampling assumes the total number n =
∑

i ni is random. If we condition on the total

number n, then [ni | n] is not a Poisson distribution any more.

P (ni observations in cell i, i = 1, . . . , c |
∑

nj = n)

=
ni observations in cell i, i = 1, . . . , c

P (
∑
nj = n)

=
Πi[exp(−mi)m

ni
i /ni!]

exp(−
∑
mj)(

∑
mj)n/n!

=
n!

Πini!
Πiπ

ni
i , (12)

where πi = mi/(
∑
mj), i = 1, . . . , c. This is the multinomial (n, {πi}) distribution.

Alternatively, if the n observations are independent and each has a probability of πi falling in

category i of the c categories, then {ni} follow the same distribution (12).
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3.1.3 Independent Multinomial Sampling

Suppose we take observations on a categorical response variable Y , separately at various settings

of an explanatory variable X. Let nij denote the # of observations in the jth response category, at

the ith setting of X. Suppose the ni+ observations on Y at the ith setting of X are independent,

each having probability distribution {π1|i, . . . , πJ |i}. Then the counts {nij, j = 1, . . . , J} have the

multinomial distribution

ni+!

Πjnij!
Πjπ

nij

j|i . (13)

When samples at different settings of X are independent, the joint probability function for the

entire dataset is the product of (13) from the various settings. This sampling scheme is called

independent multinomial sampling, sometimes also called product multinomial sampling.

Another scenario where independent multinomial sampling arises: Suppose {nij} follow ei-

ther independent Poisson sampling with means {mij}, or multinomial sampling with probabilities

{πij = mij/n}. When X is an explanatory variable, it is sensible to perform statistical inference

conditional on the totals {ni+}, even when their values are not fixed by the sampling design.

When we condition on {ni+}, the cell counts {nij, j = 1, . . . , J} have the multinomial distribu-

tion (13) with response probabilities {πj|i = mij/mi+}, and the cell counts from different rows are

independent.

In prospective studies, {ni+} for X are often fixed, and we regard each row of J counts as an

independent multinomial sample on Y .

In retrospective studies, the totals {n+j} for Y are often fixed, and we regard each column of

I counts as an independent multinomial sample on X.

In cross-sectional studies, the total sample size is fixed, but not the row or column totals, and

we regard the IJ cell counts as a multinomial sample.
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Physical activity example

Physical Activity and Quality of Life (QOL) for Cancer Survivors

and People at Increased Risk

Distress status at first-time visit

Physical activity Distressed Non-distressed Total

Physically active 15 20 35

Sedentary 45 20 65

Total 60 40 100

Scenario 1: Survey all visitors (seeking counseling or treatment) at the QOL Shared Resources

at MD Anderson Cancer Center in the next year. Classify them into four categories, i.e., physically

active vs sedentary + distressed vs non-distressed, at the first time of their visit to the Shared

Resources. In this scenario, the total # of people visiting in the next year will be a random variable.

Therefore, we can treat it as a Poisson random variable. The sampling is Poisson sampling with

unknown expected frequencies {m11,m12,m21,m22}.

Scenario 2: Survey a random sample of 200 people who visited the Shared Resources in the

past year. Classify each subject into one of the above four categories. This is a multinomial

sampling with a total sample size of 200 and unknown cell probabilities {π11, π12, π21, π22}.

Scenario 3: Suppose the data for the distressed and non-distressed people visiting the Shared

Resources have been kept separately in some way so that we can randomly sample, e.g., 100

distressed people, and separately randomly sample 100 non-distressed people, and classify them

according to their physical activity status. Now the column totals are fixed. This is independent

binomial sampling within each column.

Scenario 4: Treat both row and column totals as fixed. In the 2× 2 table case, only one cell

count will be random. Hypergeometric sampling distribution – Fisher’s exact test, which we will

talk about later.
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3.1.4 Likelihood Functions and MLEs

Assume multinomial sampling, recall:

l ∝ Πc
i=1π

ni
i

L =
c∑
i=1

ni log πi

Solving the likelihood equation (letting the first derivative of L equal 0) results in: π̂i = ni/n,

i = 1, . . . , c. It can be shown that the sample counts are minimal sufficient statistics. Birch (1963)

showed that such estimates are MLEs.

Conclusions:

1) For contingency tables, the MLEs of cell probabilities are the sample cell proportions;

2) The MLEs of marginal probabilities are the sample marginal proportions;

3) If two categorical variables are independent, i.e., πij = πi+π+j, then the MLE of πij is

π̂ij = pi+p+j = ni+n+j/n
2.

For multinomial sampling of size n over IJ cells of a two-way table, nij ∼ B(n, πij). The

MLE of mij, or m̂ij = nπ̂ij. Under independence, m̂ij = npi+p+j = ni+n+j/n. These are called

estimated frequencies, and will be used in the test of independence later.

Many analyses yield the same estimation results for Poisson, multinomial, or independent

multinomial sampling schemes, because of the similarity in the likelihood functions.

3.2 Inference for Odds Ratios, Difference of Proportions and Relative

Risks

3.2.1 Delta Method

1) Random variable case:

Suppose
√
n(Tn − θ)

L→ N(0, σ2), g twice differentiable at θ.
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Taylor expansion:

g(t) = g(θ) + (t− θ)g′(θ) + (t− θ)2g′′(θ?)/2, ((t− θ)2g′′(θ?)/2 = O(|t− θ|2)).

Therefore,

√
n[g(Tn)− g(θ)] =

√
n(Tn − θ)g′(θ) +

√
nO(|Tn − θ|2) (note here

√
nO(|Tn − θ|2) = Op(n

−1/2)),

and
√
n[g(Tn) − g(θ)]

L→ N(0, σ2[g′(θ)]2). Here Op(zn) denotes a random variable such that for

every ε > 0, there is a constant K and an integer n0 such that P [Op(zn)/zn < K] > 1− ε for all

n > n0.

2) Random vector case:

Let T n = (Tn1, . . . , Tnc)
′, θ = (θ1, . . . , θc)

′. Suppose
√
n(T n − θ)

L→ N(0,Σ). Suppose

g(t1, . . . , tc) has a nonzero differential φ = (φ1, . . . , φc)
′ at θ, where φi = ∂g/∂ti |t=θ. Then

√
n[g(T n)− g(θ)]

L→ N(0,φ′Σφ).

3.2.2 Odds Ratio

In 2× 2 table,

θ̂ =
n11n22

n12n21

.

A continuity correction:

θ̃ =
(n11 + 0.5)(n22 + 0.5)

(n12 + 0.5)(n21 + 0.5)
.

θ̂ and θ̃ have the same asymptotic normal distribution around θ.

σ̂(log θ̂) =

(
1

n11

+
1

n12

+
1

n21

+
1

n22

)1/2

(14)

Average 100(1− α)% CI for log θ:

log θ̂ ± zα/2σ̂(log θ̂).
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Similarly, replacing {nij} by {nij+0.5} improves the asymptotic standard error (ASE) accordingly.

Derivation of (14):

Suppose sample counts {ni, i = 1, . . . , c} follow a multinomial (n, {πi}) distribution. Denote

the sample proportion as pi. We have Epi = πi, E(pi − πi)2 = πi(1 − πi)/n. (p1, . . . , pc−1) have

a large-sample multivariate normal distribution, or p = (p1, . . . , pc) have a multivariate normal

distribution with a singular covariance matrix. In fact,

√
n(p− π)

L→ N(0, Diag(π)− ππ′),

where π = (π1, . . . , πc)
′.

Let ξ be a differentiable function of {πi} and ξ̂ be the corresponding sample value. Let

φi = ∂ξ/∂πi, i = 1, . . . , c, then
√
n(ξ̂ − ξ)/σ L→ N(0, 1),

where σ2 =
∑
πiφ

2
i − (

∑
πiφi)

2.

A large sample CI for ξ takes the form ξ̂ ± zα/2σ̂/
√
n.

Now we have ξ = log θ = log π11+log π22− log π12− log π21. We then have φ11 = ∂ log θ/∂π11 =

1/π11, similarly, φ12 = −1/π12, φ21 = −1/π21, and φ22 = 1/π22.

Since
∑∑

πijφij = 0, σ2 =
∑∑

πijφ
2
ij =

∑∑
1/πij. Therefore, the ASE for log θ̂ is

(
∑∑

1/nij)
1/2.

3.2.3 Difference of Proportions and Relative Risk

Again consider a 2 × 2 table. We want to calculate CIs for the difference in proportions and

relative risk, e.g., with a difference in proportion defined as π1|1 − π1|2, and a relative risk defined

as π1|1/π1|2. For these measures, we treat the rows as independent binomial samples.

Difference of proportions:

To estimate π1|1 − π1|2, we use p1|1 − p1|2 = n11/n1+ − n21/n2+.
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E(p1|1 − p1|2) = π1|1 − π1|2

SD:

σ(p1|1 − p1|2) =

[
π1|1(1− π1|1)

n1+

+
π1|2(1− π1|2)

n2+

]1/2
Estimate σ(p1|1 − p1|2) by [

p1|1(1− p1|1)
n1+

+
p1|2(1− p1|2)

n2+

]1/2
Then a 100(1− α)% CI can be constructed by (p1|1 − p1|2)± zα/2σ̂(p1|1 − p1|2).

No continuity correction is necessary assuming row totals are greater than 0.

Relative risk:

Sample relative risk is r = p1|1/p1|2. ASD of log r is

σ(log r) =

(
1− π1|1
π1|1n1+

+
1− π1|2
π1|2n2+

)1/2

.

(keep in mind that
√
n(p1|1−π1|1)

L→ N(0, π1|1(1−π1|1)) We have σ(log p1|1) = (1−π1|1)/(π1|1n1+),

similarly, σ(log p1|2) = (1− π1|2)/(π1|2n2+). The ASE of log r is

σ̂(log r) =

(
1− p1|1
p1|1n1+

+
1− p1|2
p1|2n2+

)1/2

.

When p1|1 and/or p1|2 equal 0, both log r and the sample version of the SE are undefined.

A less biased estimator of the log relative risk is

log r̃ = log

(
n11 + 1/2

n1+ + 1/2

)
− log

(
n21 + 1/2

n2+ + 1/2

)
,

and a corresponding CI is

log r̃ ± zα/2
[

1

n11 + 1/2
− 1

n1+ + 1/2
+

1

n21 + 1/2
− 1

n2+ + 1/2

]1/2
.

Exponentiating endpoints gives CI for the relative risk r.
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Physical activity example (revisited)

Suppose we randomly sampled 100 visitors and classified them in the 2× 2 table below:

Physical Activity and Quality of Life (QOL) for Cancer Survivors

and People at Increase Risk

Distress status at first-time visit

Physical activity Distressed Non-distressed Total

Physically active 15 20 35

Sedentary 45 20 65

Total 60 40 100

θ̂ =
n11n22

n12n21

=
15× 20

45× 20
= .33

θ̃ =
(n11 + .5)(n22 + .5)

(n12 + .5)(n21 + .5)
=

(15 + .5)× (20 + .5)

(45 + .5)× (20 + .5)
= .34

θ̂ and θ̃ are close because no cell count is small.

log θ̂ = −1.099. ASE = (1/n11 + 1/n12 + 1/n21 + 1/n22)
1/2. Therefore, a 95% CI for log θ

is −1.099 ± 1.96 × .435 = (−1.952,−.246). A 95% CI for the odds ratio θ is the (e−1.952, e−.246)

= (.142, .782).

Now suppose the sampling was done by independent binomial sampling for the two rows. That

is, we randomly sampled 35 physically active and 65 sedentary people, and classified them based

on their distress status.

The difference of proportions between two rows is p1|1 − p1|2 = 15/(15 + 20)− 45/(45 + 20) =

−.264. The SE is

σ̂(p1|1−p1|2) =

[
p1|1(1− p1|1)

n1+

+
p1|2(1− p1|2)

n2+

]1/2
=

(
15/35× 20/35

35
+

45/65× 20/65

65

)1/2

= .101.

Therefore, a 95% CI for π1|1 − π1|2 is −.264± 1.96× .101 = (−.462,−.066).
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For estimating relative risk,

log r = log(p1|1/p1|2) = log
15/35

45/65
= −.480

ASE:

σ̂(log r) =

(
1− p1|1
p1|1n1+

+
1− p1|2
p1|2n2+

)1/2

=

(
1

n11

− 1

n1+

+
1

n21

− 1

n2+

)1/2

=

(
1

15
− 1

35
+

1

45
− 1

65

)1/2

= .212.

Therefore, a 95% CI for π1|1/π1|2 is (.408, .938).

3.3 Testing Independence

H0 : πij = πi+π+j

We could use the Pearson X2 statistic with nij in place of ni and mij = nπij = nπi+π+j in

place of mi. {πi+} and {π+j} are usually unknown.

3.3.1 Pearson Chi-Squared Test

In I × J two-way contingency tables,

X2 =
∑
i

∑
j

(nij − m̂ij)
2

m̂ij

,

where m̂ij = npi+p+j. Under H0, X
2 L→ X 2

(I−1)(J−1), as n→∞.

Why is df = (I − 1)(J − 1)?

c = IJ , t = (I − 1) + (J − 1). So c− 1− t = IJ − 1− (I − 1)− (J − 1) = (I − 1)(J − 1).

3.3.2 Likelihood-Ratio Chi-Squared

Let Λ be the ratio of the maximized likelihood under H0 and under H0 ∪Ha. Then

−2 log Λ ∼ X 2
df , as n→∞,
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where df = difference in # of parameters between H0 and H0 ∪Ha.

Assume multinomial sampling, kernel of likelihood:

∏
i

∏
j

π
nij

ij , πij ≥ 0,
∑
i

∑
j

πij = 1.

Under H0: MLEs are π̂i+ = ni+/n, π̂+j = n+j/n, so that π̂ij = ni+n+j/n
2.

Under the general case (i.e., H0 ∪Ha), π̂ij = nij/n.

Then we have

Λ =

∏
i

∏
j(ni+n+j)

nij

nn
∏

i

∏
j n

nij

ij

,

and

G2 = −2 log Λ = 2
∑
i

∑
j

nij log(nij/m̂ij).

Under H0, as n → ∞, G2 L→ X 2
df , where df = difference in # of parameters between H0 and

H0 ∪Ha = (I − 1)(J − 1).

Comparison between X2 and G2: They test the same hypothesis, same df , perform similarly

when n is large. However, X2 seems to be more robust in small samples.

Practical conditions: G2 is poor if n/(IJ) < 5, while in certain cases of these X2 may still

perform ok.
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Physical activity example (revisited) (assuming multinomial sampling):

Physical Activity and Quality of Life (QOL) for Cancer Survivors

and People at Increase Risk

Distress status at first-time visit

Physical activity Distressed Non-distressed Total

Physically active 15 (21) 20 (14) 35

Sedentary 45 (39) 20 (26) 65

Total 60 40 100

X2 = (15 − 21)2/21 + (20 − 14)2/14 + (45 − 39)2/39 + (20 − 26)2/26 = 6.59. With a null

distribution of X 2
1 (df = (I − 1)(J − 1) = 1), p-value = 0.01.

G2 = 2
∑

i

∑
j nij log(nij/m̂ij) = 2[15 log(15/21)+20 log(20/14)+45 log(45/39)+20 log(20/26)] =

6.56. With a null distribution of X 2
1 , p-value = 0.01.

3.3.3 Invariance of Chi-Squared to Category Orderings

The {m̂ij = ni+n+j/n} used in X2 and G2 depend on the row and column marginal totals, but

not on the order in which the rows and columns are listed. Thus, X2 and G2 do not change under

permutations of rows or columns. Both row and column variables are treated as nominal scales in

the tests. We essentially ignore some information when we use X2 and G2 to test independence

between ordinal scales.

When at least one variable is ordinal, it is usually possible to construct more powerful tests of

independence, which will be discussed later in this course.

3.3.4 Partitioning Chi-Squared

Some known facts: 1) A chi-squared random variable with df = ν has representation Z2
1 + . . .+Z2

ν ,

where Z1, . . . , Zν are independent N(0, 1) random variables; 2) If X2
1 and X2

2 are independent
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random variables having chi-squared distributions with df ν1 and ν2, respectively, then X2 =

X2
1 + X2

2 has a chi-squared distribution with df = ν1 + ν2; 3) Conversely, a chi-squared statistic

having df = ν has partitionings into independent chi-squared components. For example, it can be

partitioned into ν components each having df = 1.

Partitioning chi-squared statistics for testing independence may help reveal certain aspects of

the association between two variables. For example, it may help show that an association primarily

reflects differences between certain categories or groupings of categories.

Consider a 2× J table:

Y

X 1 . . . J

1 n11 . . . n1J

2 n21 . . . n2J

A simple partitioning of G2 with J − 1 components: The jth component is G2 for testing in-

dependence in a 2× 2 table, where the first column combines columns 1 through j of the original

table, and the second column is column j + 1, j = 1, . . . , J − 1. Each statistic has a single df.

A natural alternative seems to be partitioning G2 based on (J − 1) 2 × 2 tables obtained

by pairing each column with a particular one, say the last. However, these statistics are not

asymptotically independent, and their sum does not equal G2 for testing independence in the full

table.

Now consider an I × J table and two potential partitions that result in asymptotically inde-

pendent chi-squared components.

1: Compare columns 1 and 2, then combine columns 1 and 2 and compare them to column 3,

and so on. Each of the J − 1 statistics has df = I − 1.

2: A more refined partition. One example:
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∑
a<i

∑
b<j nab

∑
a<i naj∑

b<j nib nij

for i = 2, . . . , I and j = 2, . . . , J . This generates (I − 1)(J − 1) chi-squared statistics, each having

df = 1.

An origin of schizophrenia example:

The data classify a sample of psychiatrists by their school of psychiatric thought and by their

opinion on the origin of schizophrenia.

Most Influential School of Psychiatric Thought and Ascribed

Origin of Schizophrenia

Origin of Schizophrenia

School of Psychiatric Thought Biogenic Environmental Combination

Eclectic 90 12 78

Medical 13 1 6

Psychoanalytic 19 13 50

An overall test of independence gives G2 = 23.04 with df = 4.

We can better understand this association by partitioning G2 into four independent compo-

nents.

Subtables Used in Partitioning Chi-Squared in the Origin of Schizophrenia Example

Bio Env Bio + Env Com Bio Env Bio + Env Com

Ecl 90 12 Ecl 102 78 Ecl + Med 103 13 Ecl + Med 116 84

Med 13 1 Med 14 6 Psy 19 13 Psy 32 50

Subtable 1: Comparing eclectic and medical schools of psychiatric thought on whether the

origin of schizophrenia is biogenic or environmental (assuming the opinion is either biogenic or

environmental). G2 = 0.29 with df = 1.

46



Subtable 2: Compare ecl and med schools in terms of proportion of bio and env combo or

either. G2 = 1.36 with df = 1.

Sum of these two G2 equals the G2 for the independence model applied to the first two rows

of the full table, i.e., G2 = 1.65 with df = 2. There is little evidence of a difference in thought on

the ascribed origin of schizophrenia between eclectic and medical schools.

Subtable 3: Combine eclectic and medical schools and compare them to the psychoanalytic

school (bio vs env). G2 = 12.95 with df = 1.

Subtable 4: Same as subtable 3, except to compare proportions of ascribing the origin to bio

+ env vs com. G2 = 8.43 with df = 1.

The psychoanalytic school seems more likely than the other schools to ascribe the origins of

schizophrenia as being a combination. Among those who chose either the biogenic or environmental

origin, members from the psychoanalytic school were more likely than the other schools to choose

the environmental origin.

Sum of the four G2 equals 23.04, the value for testing the overall independence in the original

table.

3.3.5 Rules for Partitioning

Necessary conditions for independent partitioning:

1. Dfs for subtables sum to the df for the original table.

2. Each cell count in the original table must be a cell count in one and only one subtable.

3. Each marginal total of the original table must be a marginal total for one and only one

subtable.

To check empirically, see if the sum of G2 for subtables equals that for the original table.
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X2 does not equal the sum of X2 for separate tables. However, asymptotically X2 is equivalent

to G2. When there are small sample counts, safer to use X2 to study the component tables.

3.4 Exact Test of Independence for Small Samples

We have talked about inferences (i.e., calculating confidence intervals) for odds ratios, difference

of proportions, and relative risk, and Pearson’s and likelihood ratio chi-squared tests. All these

inferences are based on large samples. As n→∞, the multinomial distribution for {ni} is better

approximated by a multivariate normal distribution, and X2 and G2 have nearly chi-squared

distributions.

What if the sample size is small? For example, in a two-way table, say for certain (i, j), nij < 5?

The large-sample Pearson’s chi-squared and likelihood ratio tests may not be trustworthy in these

situations.

We can try to find the exact distribution of the cell counts under the null hypothesis of

independence, instead of resorting to a large sample approximation by a multivariate normal

distribution.

3.4.1 Fisher’s Exact Test

Consider a 2× 2 table:

Y

X 1 2

1 n11 n12

2 n21 n22

While the unconditional joint distribution of the cell counts is a function of two unknown

parameters (i.e., one marginal row probability and one marginal column probability) under the
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null hypothesis of independence, the joint distribution will be a distribution free of any unknown

parameters conditioning on both the row and column totals.

Assuming Poisson, multinomial, or independent multinomial sampling, conditioning on the

observed marginal totals, the distribution of n11, which determines all three other cell counts, is a

hypergeometric distribution as follows: n1+

n11


 n2+

n+1 − n11


 n

n+1


.

Range of n11: m− ≤ n11 ≤ m+, where m− = max(0, n1+ + n+1 − n) and m+ = min(n1+, n+1).

Consider Ha: θ > 1. Given both marginal totals, θ increases with n11. Therefore, to test

independence the p-value is the sum of hypergeometric probabilities for tables having n11 at least

as large as the observed value.

Fisher’s tea drinker example

An experiment to test a British woman’s claim that she could distinguish whether milk or tea

was added to the cup first.

Guess poured first

Poured first Milk Tea Total

Milk 3 1 4

Tea 1 3 4

Total 4 4 8

H0: θ = 1, Ha: θ > 1.

Completely natural to use the hypergeometric distribution as the null distribution of n11 be-

cause both row and column marginals are fixed.
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Recall, p-value is the null probability of the outcomes of the observed table and those would

have given even more evidence in favor of her claim.

The null probability for the observed table is 4

3


 4

1


 8

4


= 0.229

There is only one more extreme table, with four correct guesses. The corresponding null

probability is  4

4


 4

0


 8

4


= 0.014

Therefore, the p-value is .229 + .014 = .243. The null hypothesis of no association between the

truths and guesses was not rejected. (This could be due to the small sample size, though, i.e.,

lack of power to detect an association.)

A two-sided p-value can be defined as the sum of the probabilities of tables no more likely to

occur than the observed table.

Due to the discreteness, it is usually difficult to achieve the exact significance level (or Type I

error). They are usually smaller than the nominal significance level, and therefore is conservative.

Randomization on the boundary of the critical region can help achieve the exact significance

level. For example, if we reject the null hypothesis with 0.157 probability (a tuned value), then

the significance level equals

P (reject H0) = E P (reject H0 | n11) = 1.0(0.014) + 0.157(0.229) = 0.05.
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However, randomized tests are difficult to justify in practice. Instead, it may be recommended

to simply report the p-value.

3.4.2 Derivation of Exact Conditional Distribution

We start with assuming fixed row totals, or independent multinomial sampling across rows.

Under H0, πj|1 = . . . πj|I = π+j, j = 1, . . . , J .

The joint probabilities of {nij} is

(
∏

i ni+!)
(∏

j π
n+j

+j

)
∏

i

∏
j nij!

Nuisance parameters: π+j.

{n+j} are sufficient statistics for {π+j}.

We want to condition on {n+j} to eliminate the nuisance parameters from the null distribution

for n11.

The distribution of {n+j} is multinomial (n, {π+j}).

The joint distribution function of {nij} and {n+j} is identical to the probability function of

{nij} (since {n+j} are determined by {nij}).

The conditional distribution of {nij} given {n+j} is therefore

(
∏

i ni+!)
(∏

j n+j!
)

n!
∏

i

∏
j nij!

. (15)

If we instead start with a multinomial sample (but not an independent multinomial sample),

then we can condition on both the row and column totals to still obtain the null distribution (15).

Distribution (15) is called the multiple hypergeometric distribution.

3.4.3 Other Exact Tests of Independence

Exact tests of independence for an I × J table use the multiple hypergeometric distribution.
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Exact test for ordinal data: A p-value could be P [C−D ≥ (C−D)o], where C and D denote the

# of concordant and discordant pairs and (C−D)o denotes the corresponding observed difference.

An example for exact conditional test:

Smoking level

Cigarettes/Day

0 1− 24 > 25

Control 25 25 12

Myocardial infarction 0 1 3

For this table, C = 175 and D = 12, so (C −D)o = 163. Given the marginal totals, the only

other table having (C −D) at least this large has counts (25, 26, 11) for row 1 and (0, 0, 4) in row

2.

P (C −D ≥ 163) = 0.0183.

If we treat the variables as nominal and use an exact distribution for X2, we get a p-value

(defined as P (X2 ≥ X2
o ) where X2

o = 6.96 is observed X2) of 0.052.

Both exact tests, but assuming ordinal (as it is the case) yields larger power.

Other tests/p-values: 1) Pearson’s chi-squared test (assuming large sample) has a p-value of

0.031; 2) Freeman-Halton p-value is 0.034.

Usually computation is intensive for exact tests for I × J tables with I > 2 and/or J > 2.
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4 The Generalized Linear Models (GLMs)

4.1 Ordinary Linear Regression

Conditional on {xi}, y ∼ β0 + β1x1 + . . . + βkxk + ε, where ε ∼ N(0, σ2). Using usual matrix

notation,

Y = Xβ + ε

with ε ∼ N(0,Σ = σ2I).

The above equation can also be decomposed into the following parts:

1) y ∼ N(Ey ≡ µ, σ2);

2) η = β0 + β1x1 + . . .+ βkxk;

3) µ = η.

4.2 Components of GLMs

1. Random component: Random component identifies the response variable y and assumes a

probability distribution for it (e.g., success/failure and Bernoulli/binomial distribution; counts

and Poisson distribution, negative binomial distribution, etc.)

Denote observations on y by (y1, . . . , yn). Standard GLMs treat y1, . . . , yn as independent.

Example: dose-response (toxicity) curve. y is the toxicity outcome (yes or no). y ∼ Bernoulli(µ).

2. Systematic component: Systematic component specifies the explanatory variables. They

enter linearly as predictors on the right-hand side (RHS) of the model equation (to be given). It

is of the form: β0 + β1x1 + . . .+ βkxk.

Example: dose-response (toxicity) curve: β0 + β1x, where x is dose level.

3. Link function: Denote µ = Ey, the expected value of y. The link function specifies a
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function g(·) that relates µ to the linear predictor as

g(µ) = β0 + β1x1 + . . .+ βkxk.

The function g(·) connects the random and systematic components. The simplest link function

is g(µ) = µ, known as the identity link function. This is used in the ordinary linear regression

equation.

Example: dose-response (toxicity) curve: g(µ) = log[µ/(1 − µ)] – logit link (to be discussed

later).

Other examples: If y is a cell count, y ∼ Poisson(µ), g(µ) = log µ links with a systematic

linear component – known as a log linear model.

4.3 Likelihood Functions for GLMs

Y = (y1, . . . , yn)′. An important class of distributions of yi’s: exponential family.

Let fy(y; θ, φ) = exp{(yθ − b(θ))/a(φ) + c(y, φ)} for some functions a(·), b(·) and c(·). If φ is

known, fy(y; θ, φ) is an exponential family model with canonical (natural) parameter θ.

Example: Normal distribution (treating µ as a parameter of interest)

1√
2πσ2

exp{−(y − µ)2}/2σ2

= exp
{

(yµ− µ2/2)/σ2 − y2/(2σ2)− log(2πσ2)/2
}

so that θ = µ, φ = σ2, a(φ) = φ, b(θ) = θ2/2, and c(y, φ) = −{y2/σ2 + log(2πσ2)}/2 =

−{y2/φ+ log(2πφ)}/2.

For a general exponential family distribution, let L(θ, φ; y) = log fy(y; θ, φ) (function of θ and

φ). Can we derive a general formula for Ey and V ar(y) based on fy(y; θ, φ)?

When no confusion is caused, we use notation fy(y; θ, φ) and l(θ) interchangeably.

E
∂L

∂θ
= E

∂l(θ)/∂θ

l(θ)
=

∫
∂l(θ)/∂θdy = ∂

∫
l(θ)dy/∂θ = 1′ = 0
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On the other hand, E{∂L/∂θ} = E((y − b′(θ))/a(φ)). We therefore have Ey = b′(θ).

Let us now calculate E∂2L/∂θ2. We write

∂2L

∂θ2
=
∂2l(θ)/∂θ2

l(θ)
−
{
∂l(θ)/∂θ

l(θ)

}2

.

Taking expectation of both sides, we get

E

(
∂2L

∂θ2

)
+ E

(
∂L

∂θ

)2

= 0

(because
∫
∂l(θ)/∂θdy = 0⇒

∫
∂2l(θ)/∂θ2dy = 0).

This implies

−b
′′(θ)

a(φ)
+ E

{
y − b′(θ)
a(φ)

}2

= 0,

or V ar(y) = b′′(θ)a(φ). Here b′′(θ) depends on the canonical parameter (and hence on the mean)

only and will be called the variance function (denoted as V (µ)). a(φ) is independent of θ and

depends only on φ.

The function a(φ) is commonly of form a(φ) = φ/w, where φ, called the dispersion parameter,

is constant over observations, and w is a known prior weight that varies from observation to

observation.

Example of a(φ): For a normal model in which each observation is the mean of m independent

readings we have a(φ) = σ2/m.

The most important exponential family distributions:

Normal:

1√
2πσ2

exp{−(y − µ)2}/2σ2

= exp
{

(yµ− µ2/2)/σ2 − y2/(2σ2)− log(2πσ2)/2
}

Poisson:

µy exp(−µ)

y!
= exp{yθ − exp(θ)− log y!}.
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θ = log µ, a(φ) = φ = 1, b(θ) = exp (θ), c(y, φ) = log y!.

Binomial (divided by m): m

my

 πmy(1− π)m−my = exp

my log{π/(1− π)}+m log(1− π) + log

 m

my


 ,

θ = log{π/(1 − π)}, a(φ) = 1/m, φ = 1, b(θ) = − log(1 − π) = log{1 + exp(θ)}, c(y, φ) =

log

 m

my

.

Gamma:

yν−1 exp(−y/µ)

Γ(ν)µν
= exp {νy{−1/(µν)} − ν log(µν) + ν log (νy)− log y − log Γ(ν)} ,

a(φ) = φ = 1/ν, θ = −1/(µν), b(θ) = − log(−θ), c(y, φ) = ν log (νy) − log y − log Γ(ν) =

log (y/φ)/φ− log y − log Γ(1/φ).

Inverse Gaussian (assume µ > 0):√
σ2

2πy3
exp

{
−σ

2(y − µ)2

2µ2y

}
= exp

{
log σ2/2− log(2π)/2− 3 log y/2− σ2(y − µ)2/(2µ2y)

}
= exp

{
log σ2/2− log (2π)/2− 3 log y/2− σ2(y − 2µ+ µ2/y)/(2µ2)

}
a(φ) = φ = 1/σ2, θ = −1/(2µ2), b(θ) = −

√
−2θ, c(y, φ) = −{log (2πφy3) + 1/(φy)} /2.

4.4 Processes in Model Fitting

Three distinct processes in model fitting: 1) model selection; 2) parameter estimation; 3) predic-

tion.

4.4.1 Model Selection

Start with a particular class of models.
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Issues to consider in model selection:

1. Model assumptions.

The GLM example. Assumptions: 1) Independence across observations. For example, this

excludes autoregressive correlation structure of time series and spatial processes; 2) A single error

term. In classical linear models, when both within and between factors are present, there are two

error terms. (However, these cases also correspond to the dependent cases in my opinion.)

While these assumptions are in some sense restrictive, they may not be as restrictive as they

appear.

Examples:

1) Fitting of autoregressive models using programs for fitting ordinary linear models;

2) A grouping factor (treated as nuisance) is present in a categorical data analysis. If we can

somehow eliminate the effects of the nuisance factor and perform a within-group analysis, then

observations can be treated as if they were independent (e.g., conditional logistic regression for

matched case-control data).

2. Choice of the scale for analysis (e.g., y,
√
y, log y, etc.)

Choice of analysis scale depends on both observations and the purpose the scale is to be used.

In classical linear regression, a good scale may imply: 1) constancy of variance; 2) normality;

3) additivity of systematic effects.

For a Poisson random variable, systematic effects are often multiplicative. y1/2 stabilized

variance, y2/3 approximates symmetry or normality better, and log y produces additivity of the

systematic effects. However, often no scale achieves all purposes for a non-normally distributed

random variable.

The GLM is a good tool to reduce the scaling problems, because: 1) distribution can be

explicitly specified and inference can proceed without the normality assumption; 2) additivity of

effects can be specified on a transformed scale (so we can still assume additivity of effects in spite
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of a clearly indicated non-linear relationship between the mean of the outcome and the covariates).

Note that in the GLMs, additivity is correctly postulated as a property of the expected re-

sponses (instead of on the data themselves!)

3. Covariate selection.

Criterion needs to be defined. What is considered an optimal model in certain context? Ex-

amples: AIC, BIC, DIC.

It is unlikely that a clear winner is indicated among a large number of competing models.

So usually a set of ‘alternatives’ are almost as good and statistically indistinguishable with the

‘winner’.

4.4.2 Estimation

Once a model is chosen, parameters need to be estimated along with their precision.

Criterion of estimation. In the case of GLMs, it is goodness of fit between the observed

data and the fitted values generated by the model. That is, the parameter estimates minimize

the goodness-of-fit criterion. We will mainly be concerned about maximizing the likelihood or log

likelihood of the parameters.

Suppose f(y; θ) is the density function or probability distribution for y. Let L(µ; y) be the log

likelihood as a function of µ = Ey. With n independent observations, L(µ; y) =
∑

i log f(yi; θi),

where µ = (µ1, . . . , µn).

Define

D?(y;µ) = 2L(y; y)− 2L(µ; y),

which we call the scaled deviance.

For the exponential family models considered in this class, L(y; y) is the maximum likelihood

achievable for an exact fit in which the fitted values are equal to the observed data. Therefore,

maximizing L(µ; y) is equivalent to minimizing D?(y;µ), subject to appropriate model constraints
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for µ.

The ordinary linear regression example (assuming normality and known variance σ2):

For a single observation y,

f(y;µ) =
1√

2πσ2
exp

{
−(y − µ)2

2σ2

}
.

Log likelihood is

L(µ; y) = − log(2πσ2)/2− (y − µ)2/(2σ2).

The maximum likelihood achievable is obtained by replacing µ by y:

L(y; y) = − log(2πσ2)/2.

Therefore, the scaled deviance is

D?(y;µ) = 2{L(y; y)− L(µ; y)} = (y − µ)2/σ2.

Therefore, the deviance is synonymous with least squares for the normal-theory linear regres-

sion model.

4.4.3 Prediction

Generally, prediction is concerned with statements about the likely values of unobserved events

(not necessarily those in the future, as is typically the case in the time series analysis).

For example, predict random effects (unobserved) in linear mixed-effects models.

4.4.4 Important Link Functions, Canonical Links and Sufficient Statistics

Appropriate link functions match ranges of µ and η.

Some principal link functions considered in this course:
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For a Poisson distribution, a log link:

η = log µ

This results in multiplicative effects.

For a binomial distribution:

1. logit link

η = log{µ/(1− µ)}

2. probit link

η = Φ−1(µ),

where Φ(·) is the cumulative distribution function (CDF) of the standard normal distribution.

3. complementary log-log link

η = log{− log(1− µ)}.

For observations with µ > 0, the power family of links is important.

η = (µλ − 1)/λ, λ 6= 0; η = log µ, λ = 0.

Another alternative in the power link family:

η = µλ, λ 6= 0; η = log µ, λ = 0.

For both links, special action needs to be taken in any computation with λ = 0.

Canonical links occur when

θ = η,

where θ is the canonical parameter.

The canonical links for the five distributions we talked about earlier are as follows:
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Normal: η = µ,

Poisson: η = log µ,

binomial: η = log{π/(1− π)}

gamma: η = µ−1

inverse Gaussian: η = µ−2

Sufficient statistic under the canonical link: XTY (a p × 1 vector), with the jth component

being ∑
i

xijyi.

Derive this.

There are nice properties of the model when the link is the canonical link.

Nice statistical properties alone should not replace quality of fit as a model selection criterion.

We will talk about non-canonical link functions later (e.g., probit link for binary data). However,

we shall find that the canonical links are often eminently sensible on scientific grounds.
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4.5 Measuring the Goodness of Fit

4.5.1 The Discrepancy of a Fit

Full model: n observations, n parameters

Null model: n observations, 1 parameter (overall mean)

Maximum log likelihood achievable under full model: L(y, φ; y)

Maximized (over β) log likelihood under the GLM: L(µ̂, φ; y)

Let θ̂ = θ(µ̂) and θ̃ = θ(y) be the canonical parameters under the full model and the GLM,

respectively. Assuming ai(φ) = φ/wi, the discrepancy is

∑
2wi

{
yi

(
θ̃i − θ̂i − b(θ̃i) + b(θ̂i)

)}
/φ = D(y; µ̂)/φ,

where D(y; µ̂) is known as the deviance for the current model. The deviance depends on the

data only (because the maximum likelihood achievable under the full model does not depend on

model).

Relationship between scaled deviance and deviance:

D?(y; µ̂) = D(y; µ̂)/φ.

Deviances for the following five distributions:

Normal:
∑

(y − µ̂)2 ,

Poisson: 2
∑
{y log (y/µ̂)− (y − µ̂)} ,

binomial: 2
∑
{y log (y/µ̂) + (m− y) log [(m− y)/(m− µ̂)]} ,

gamma: 2
∑
{− log (y/µ̂) + (y − µ̂) /µ̂} ,

inverse Gaussian:
∑

(y − µ̂)2 /µ̂2.

Deviance for the normal distribution is the residual sum of squares.

If summed over n observations and the GLM has an intercept term, then the deviances for the

Poisson and binomial distributions are G2.
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The other important measure of discrepancy: generalized Pearson X2 statistic

X2 =
∑

(y − µ̂)2/V (µ̂),

where V (µ̂) is the estimated variance function for the distribution concerned.

For the normal distribution, X2 is again the residual sum of squares.

For the Poisson or binomial distribution it is the original Pearson X2 statistic.

Verify this for the binomial distribution.

For normal-theory linear models, both the deviance and generalized X2 have exact chi-squared

distributions.

For other distributions, asymptotic results are available. In small samples, either of these may

prove to be superior in its distributional properties. But in general, deviance has the advantage of

being additive for nested models when ML estimates are used. X2 sometimes is preferred because

of its more direct interpretation.

4.5.2 The Analysis of Deviance

A table for first differences in the deviance between nested models can be used as a screening

device for picking out obviously important terms.

Example: models involving two factors as predictors: 1, A, B, A+B.

4.6 Residuals

In normal linear models, r = y − µ̂.

We consider the theoretical form of the definition of residuals for GLMs below.

4.6.1 Pearson Residual

rP =
y − µ√
V (µ)

,
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i.e., the raw residual divided by the estimated standard deviation of y.

The name Pearson comes from the fact that for a Poisson distribution, the Pearson residual is

just the signed square root of the component of the Pearson X2 goodness-of-fit statistic, so that

∑
r2P = X2.

4.6.2 Anscombe Residual

Disadvantage of the Pearson residual: markedly skewed distribution of rP .

Anscombe proposed defining a residual using a transformation of y, say A(y), instead of the

original y, to “normalize” the residual distribution.

Wedderburn showed for GLMs, A(·) is as follows:

A(·) =

∫
dµ

V 1/3(µ)
.

For the Poisson distribution, we have∫
dµ

µ1/3
= 3µ2/3/2.

So we base our residual on y2/3−µ2/3. We further do scaling, i.e., dividing by the standard deviation

of A(y), for which the first order approximation is A′(µ)
√
V (µ). Therefore, the Anscombe residual

for the Poisson distribution is

rA =
3(y2/3 − µ2/3)/2

µ1/6
.

For the gamma distribution, the Anscombe residual takes the form

rA =
3(y1/3 − µ1/3)

µ1/3
.

For the inverse Gaussian distribution,

rA = (log y − log µ)/µ1/2.

64



4.6.3 Deviance Residual

rD = sign(y − µ)
√
di.∑

r2D = D.

For the Poisson distribution,

rD = sign(y − µ) {2 (y log(y/µ)− y − µ)}2 .

Although the forms of the Anscombe and deviance residuals are very different, they turn out

to be numerically very similar for a range of observed values (say y = cµ with c ∈ [0, 10]).

4.7 An Algorithm for Fitting the GLMs

We introduce an iterative procedure.

Assign an initial value β̂0 (hence µ̂0 and η̂0 for the expected values and linear predictors of y).

Let β̂k (hence µ̂k and η̂k) be the estimates in the current iteration.

Construct an adjusted dependent variate for each single observation (suppressing the subscript

i for unit) zk = η̂k + (y − µ̂k)
(
dη
dµ
|µ̂k
)

. Further define W−1
k =

(
dη
dµ

)2
|µ̂kV (µ̂k).

Now regress zk on the covariates x1, . . . , xp with weight Wk to give new estimates β̂k+1. Com-

pute µ̂k+1 and η̂k+1 using β̂k+1. Repeat until the changes between successive β̂’s are small.

4.7.1 Justification of the Fitting Procedure

We first show that the ML equations for βj are given by∑
W (y − µ)

dη

dµ
xj = 0,

where the summation is over the units.

Note

L = {yθ − b(θ)}/a(φ) + c(y, φ)
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and

∂L

∂βj
=
∂L

∂θ

dθ

dµ

dµ

dη

∂η

∂βj
.

We have the following: b′(θ) = µ, b′′(θ) = V ⇒ dµ/dθ = V ; ∂η/∂βj = xj. Therefore

∂L

∂βj
=
y − µ
a(φ)

1

V

dµ

dη
xj =

W

a(φ)
(y − µ)

dη

dµ
xj.

This results in the ML equation assuming a(φ) = φ.

Fisher’s scoring algorithm:

Denote u = ∂L/∂β and A = −E
(

∂2L
∂βr∂βs

)
, the Hessian matrix.

The Fisher scoring algorithm computes an adjustment of the estimate b of β, denoted as ∆b

by solving

A∆b = u.

Note

ur =
∑

W (y − µ)
dη

dµ
xr,

so that

Ars = −E∂ur
∂βs

= −E
∑[

(y − µ)
∂

∂βs

{
W
dη

dµ
xr

}
+W

dη

dµ
xr

∂

∂βs
(y − µ)

]
.

The first term vanishes on taking expectations while the second term reduces to∑
i

W
dη

dµ
xr
∂µ

∂βs
=
∑
i

Wxrxs.

Therefore (Ab)r =
∑

sArsbs =
∑
Wxrη, and

(Ab?)r = (Ab + A∆b)r = (Ab + u)r =
∑
i

Wxr{η + (y − µ)dη/dµ}.

These equations have the form of linear weighted least-squares equations with weight

W = V −1
(
dµ

dη

)2

and dependent variate

z = η + (y − µ)
dη

dµ
.

The fitting algorithm for the GLMs is thus justified.
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4.8 GLMs for Binary Data

4.8.1 Linear Probability Model

In ordinary regression, µ = Ey is a linear function of x. For a binary response, an analogous

model is

π(x) = β0 + β1x.

This is called a linear probability model.

The model has a structural defect.

Example: Snoring and Heart Disease

Relationship between snoring and heart disease

Heart disease

Snoring Yes No

Never 24 1355

Occasional 35 603

Nearly every night 21 192

Every night 30 224

Two fitting methods. One assumes the binomial random component and an identity link

function. No closed form for ML estimates. Iterative algorithms are required. Second: treating

the outcome as normal, and use least squares estimates.

Result from the first method:

x = (0, 2, 4, 5).

π̂ = 0.0172 + 0.0198x.

Coefficient β = 0.0198 is significant with a SE = 0.0028.

Results change somewhat with the score assignment for snoring.
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4.8.2 Logistic Regression Model

π(x) =
exp(β0 + β1x)

1 + exp(β0 + β1x)
,

or equivalently,

log[π(x)/{1 + π(x)}] = β0 + β1x.

The link function log[π/(1 − π)] is called the logit function. Logistic regression models are

often called logit models.

For the snoring and heart disease example, the ML fit is

logit[π̂(x)] = −3.87 + 0.40x.

4.8.3 Probit Regression Model

probit[π(x)] = β0 + β1x.

Snoring and heart disease example:

probit[π̂(x)] = −2.061 + 0.188x.

4.8.4 Binary Regression and Cumulative Distribution Function

In general, let F (·) be a cdf function.

F−1[π(x)] = β0 + β1x.

4.9 Asymptotic Inference for Model Parameters

Recall the likelihood equations

N∑
i=1

(Yi − µi)xij
var(Yi)

∂µi
∂ηi

= 0, j = 1, . . . , p.
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The Newton-Raphson or Fisher scoring method helps solve the likelihood equations and ob-

tain the ML estimators. For making inference on the parameters, we also need to calculate the

asymptotic standard errors of the estimators and confidence intervals of the parameters. To this

end, we need to calculate the asymptotic covariance matrix of model parameter estimators, which

is the inverse of the information matrix I and has elements E [−∂2L(β)/∂βh∂βj]. To find this,

for the contribution Li to the log likelihood we use the helpful result

E

(
∂2Li
∂βh∂βj

)
= −E

(
∂Li
∂βh

)(
∂Li
∂βj

)
,

which holds for exponential families (Cox and Hinkley, 1974, Sec. 4.8). Since

∂Li
∂βj

=
yi − µi
a(φ)

a(φ)

var(Yi)

∂µi
∂ηi

xij =
(Yi − µi)xij
var(Yi)

∂µi
∂ηi

,

we have

E

(
∂2Li
∂βh∂βj

)
= −E

[
(Yi − µi)xih
var(Yi)

∂µi
∂ηi

(Yi − µi)xij
var(Yi)

∂µi
∂ηi

]
.

Since L(β) =
∑

i Li,

E

(
−∂

2L(β)

∂βh∂βj

)
=

N∑
i=1

xihxij
var(Yi)

(
∂µi
∂ηi

)2

.

Thus, the information matrix has the form

I = X′WX,

where W is the diagonal matrix with main-diagonal elements

wi = (∂µi/∂ηi)
2 /var(Yi).

The asymptotic covariance matrix of β̂ is estimated by

ˆcov
(
β̂
)

= ˆI−1 =
(
X′ŴX

)−1
,

where Ŵ is W evaluated at β̂. Note that the form of W also depends on the link function.
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4.10 Inference for Generalized Linear Models

The Wald, score, and likelihood-ratio methods introduced earlier for significance testing and in-

terval estimation apply to any GLM. Here we concentrate on likelihood-ratio inference, through

the deviance of the GLM.

4.10.1 Deviance and Goodness of Fit

For some GLMs the scaled deviance has an asymptotic chi-squared distribution.

4.10.2 Deviance for Poisson Models

Assuming Poisson counts in two-way contingency tables, the deviance of the Poisson GLM that

uses a log link function, contains an intercept term, and treats the X variable as an explanatory

variable, reduces to the G2 statistic we have discussed earlier. For a Poisson or multinomial model

applied to a contingency table with a fixed number of cells c, the deviance has an approximate

chi-squared distribution for large {µi}.

4.10.3 Deviance for Binomial Models: Grouped and Ungrouped Data

With binomial responses, it is possible to construct the data file with the counts of successes and

failures at each setting for the predictors, or with the individual Bernoulli 0-1 observations at

the subject level. The deviance differs in the two cases. In the first case the saturated model

has a parameter at each setting for the predictors, whereas in the second case it has a parameter

for each subject. We refer to these as grouped data and ungrouped data cases. The approximate

chi-squared distribution for the deviance occurs for the grouped data but not for ungrouped data.

With grouped data, the sample size increases for a fixed number of settings of the predictors and

hence a fixed number of parameters for the saturated model.
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A fact: Both the deviances for a Poisson loglinear model with an intercept term and a binomial

GLM with logit link have a deviance of the form

D(y; µ̂) = 2
∑

observed × log (observed/fitted).

4.10.4 Likelihood-Ratio Model Comparison Using the Deviance

For a Poisson or binomial model M , φ = 1, so the deviance ( = scaled deviance) equals

D(y; µ̂) = −2 [L(µ̂; y)− L(y; y)] .

Consider two models, M0 with fitted values µ̂0 and M1 with fitted values µ̂1, with M0 a special

case of M1. Model M0 is said to be nested within M1.

Since M0 is simpler than M1, a smaller set of parameter values satisfies M0 than satisfies M1.

Thus, L(µ̂0; y) ≤ L(µ̂1; y), and it follows that

D(y; µ̂1) ≤ D(y; µ̂0).

Assuming that model M1 holds, the likelihood-ratio test of the hypothesis that M0 holds uses the

test statistic

−2 [L(µ̂0; y)− L(µ̂1; y)] = D(y; µ̂0)−D(y; µ̂1).

The likelihood-ratio statistic comparing the two models is simply the difference between the de-

viances. This statistic is large when M0 fits poorly compared to M1. The difference between

deviances also has the form of the deviance. Under regularity conditions, this difference has ap-

proximately a chi-squared null distribution with df equal to the difference between the numbers

of parameters in the two models.

For binomial GLMs and Poisson loglinear GLMs with intercept, the difference in deviance uses

the observed counts and the two sets of fitted values in the form

D(y; µ̂0)−D(y; µ̂1) = 2
∑

observed × log (fitted1/fitted0).
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5 Logistic Regression

5.1 Interpreting Parameters in Logistic Regression

For a binary response variable Y and an explanatory variable X, let π(x) = P (Y = 1 | X = x) =

1− P (Y = 0 | X = x). The logistic regression model is

π(x) =
exp (α + βx)

1 + exp (α + βx)
. (16)

Equivalently, the log odds, called the logit, has the linear relationship

logit [π(x)] = log
π(x)

1− π(x)
= α + βx. (17)

This equates the logit link function to the linear predictor.

5.1.1 Interpreting β: Odds Ratios

How can we interpret β in (17)? Its sign determines whether π(x) is increasing or decreasing as

x increases. The rate of climb or descent increases as |β| increases; as β → 0 the curve flattens to

a horizontal straight line. When β = 0, Y is independent of X. For quantitative x with β > 0,

the curve for π(x) has the shape of the cdf of the logistic distribution. Since the logistic density

is symmetric, π(x) approaches 1 at the same rate as it approaches 0.

Exponentiating both sides of (17) shows that the odds are an exponential function of x. This

provides a basic interpretation for the magnitude of β: The odds increase multiplicatively by eβ

for every 1-unit increase in x. In other words, eβ is an odds ratio, the odds at X = x+ 1 divided

by the odds at X = x.

The intercept parameter α is not usually of particular interest. However, by centering the

predictor about 0 [i.e., replacing x by (x − x̄), α becomes the logit at that mean, and thus

eα/(1 + eα) = π(x̄). (As in ordinary regression, centering is also helpful in complex models
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containing quadratic or interaction terms to reduce correlations among explanatory variables, also

known as collinearity.)

5.1.2 Logistic Regression with Retrospective Studies

Another property of logistic regression relates to situations in which the explanatory variable X

rather than the response variable Y is random. This occurs with retrospective sampling designs,

such as case-control biomedical studies. For samples of subjects having Y = 1 (cases) and having

Y = 0 (controls), the value of X is observed. Evidence of an association exists if the distribution

of X values differs between cases and controls. In retrospective studies, one can estimate odds

ratios. Effects in the logistic regression model refer to odds ratios. Thus, one can estimate such

models and estimate effects in case-control studies.

Here is a justification for this. Let Z indicate whether a subject is sampled (1 = yes, 0 = no).

Let ρ1 = P (Z = 1 | y = 1) denote the probability of sampling a case, and let ρ0 = P (Z = 1 | y = 0)

denote the probability of sampling a control. Even though the conditional distribution of Y given

X = x is not sampled, we need a model for P (Y = 1 | z = 1, x), assuming that P (Y = 1 | x)

follows the logistic model. By Bayes’ theorem,

P (Y = 1 | z = 1, x) =
P (Z = 1 | y = 1, x)P (Y = 1 | x)∑1
j=0 P (Z = 1 | y = j, x)P (Y = j | x)

. (18)

Now, suppose that P (Z = 1 | y, x) = P (Z = 1 | y) for y = 0 and 1; that is, for each y, the

sampling probabilities do not depend on x. For instance, often x refers to exposure of some type,

such as whether someone has been a smoker. Then, for cases and for controls, the probability of

being sampled is the same for smokers and nonsmokers. Under this assumption, substituting ρ1

and ρ0 in (18) and dividing numerator and denominator by P (Y = 0 | x), (18) simplifies to

P (Y = 1 | z = 1, x) =
ρ1 exp (α + βx)

ρ0 + ρ1 exp (α + βx)
.
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Then, dividing numerator and denominator by ρ0 and using ρ1/ρ0 = exp [log (ρ1/ρ0)] yields

logit [P (Y = 1 | z = 1, x)] = α? + βx

with α? = α + log (ρ1/ρ0).

Thus, the logistic regression model holds with the same effect parameter β as in the model for

P (Y = 1 | x). If the sampling rate for cases is 10 times that for controls, the intercept estimated

is log (10) = 2.3 larger than the one estimated with a prospective study.

With case-control studies, one cannot estimate β in other binary-response models (such as the

probit models). This is an important advantage of the logit link and is a major reason why logit

models have surpassed other models in popularity in biomedical studies.

Many case-control studies employ matching. Each case is matched with one or more control

subjects. The controls are like the case on key characteristics such as age. The model and

subsequent analysis should take the matching into account. Specifically, a conditional logistic

regression approach can be used to analyze such matched case-control data.

5.2 Inference for Logistic Regression

5.2.1 Types of Inference

For a model with a single predictor,

logit [π(x)] = α + βx,

significance tests focus on H0 : β = 0, the hypothesis of independence. The Wald test uses the

log likelihood at β̂, with test statistic z = β̂/SE or its square; under H0, z
2 is asymptotically X 2

1 .

The likelihood-ratio test uses twice the difference between the maximized log likelihood at β̂ and

at β = 0 and also has an asymptotic X 2
1 null distribution. The score test uses the log likelihood at

β = 0 through the derivative of the log likelihood (i.e., the score function) at that point. The test
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statistic compares the sufficient statistic for β to its null expected value, suitably standardized

[N(0, 1) or X 2
1 ].

For large samples, the three tests usually give similar results. The likelihood-ratio test is

preferred over the Wald. It uses more information, since it incorporates the log likelihood at H0 as

well as at β̂. When |β| is relatively large, the Wald test is not as powerful as the likelihood-ratio

test and can even show aberrant behavior.

A confidence interval for β results from inverting a test of H0 : β = β0. The interval is the

set of β0 for which the chi-squared test statistic is no greater than X 2
1 (α) = z2α/2. For the Wald

approach, this means
[(
β̂ − β0

)
/SE

]2
≤ z2α/2; the interval is β̂ ± zα/2(SE).

For summarizing the relationships, other characteristics may have greater importance than β,

such as π(x) at various x values. For fixed x = x0, logit [π̂(x0)] = α̂ + β̂x0 has a large-sample SE

given by the estimated square root of

var
(
α̂ + β̂x0

)
= var (α̂) + x20var

(
β̂
)

+ 2x0cov
(
α̂, β̂

)
.

A 95% confidence interval for logit [π(x0)] is
(
α̂ + β̂x0

)
± 1.96SE. Substituting each endpoint

into the inverse transformation π(x0) = exp (logit)/ [1 + exp (logit)] gives a corresponding interval

for π(x0).

5.2.2 Checking Goodness of Fit

In practice, there is no guarantee that a certain logistic regression model fits the data well. For any

type of binary data, one way to detect lack of fit uses a likelihood-ratio test to compare the model

to more complex ones. If more complex models do not fit better, this provides some assurance

that the model chosen (i.e., the simpler model) is reasonable.

When the explanatory variables are solely categorical, other approaches to detecting lack of

fit include Pearson X2 (or likelihood-ratio G2) statistic (based on an asymptotic null chi-squared

distribution).
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5.3 Logit Models with Categorical Predictors

Dummy variable approach.

Cochran-Armitage trend test for I × 2 table with ordered rows. Assumes a linear probability

model. However, this test turns out to be the score test under the linear logit model.

5.4 Multiple Logistic Regression

Multiple predictors.

5.4.1 Goodness of Fit as a Likelihood-Ratio Test and Model Comparison

Same approaches based on likelihood-ratio test statistics following a null chi-squared distribution.

Note here “null” means that the reduced model fits equally well as the more complex model.
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6 Models for Matched Pairs

We introduce methods for comparing categorical responses for two samples when each observation

in one sample pairs with an observation in the other. Such matched-pairs data commonly occur in

studies with repeated measurement of subjects, such as longitudinal studies that observe subjects

over time. Because of the matching, the responses in the two samples are statistically dependent.

The following table illustrates matched-pairs data. For a poll of a random sample of 1600

voting-age British citizens, 944 indicated approval of the Prime Minister’s performance in office.

Six months later, of these same 1600 people, 880 indicated approval. The two cells with identical

row and column response form the main diagonal of the table. These subjects had the same

opinion at both surveys. They compose most of the sample, since relatively few people changed

opinion. A strong association exists between opinions six months apart, the sample odds ratio

being (794× 570)/(150× 86) = 35.1.

For matched pairs with a categorical response, a two-way contingency table with the same row

and column categories summarizes the data. The table is square.

Example of Rating of Performance of Prime Minister

Second Survey

First Survey Approve Disapprove Total

Approve 794 150 944

Disapprove 86 570 656

Total 880 720 1600

6.1 Comparing Dependent Proportions

For each of n matched pairs, let πab denote the probability of outcome a for the first observation

and outcome b for the second. Let nab count the number of such pairs, with pab = nab/n the
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sample proportion. We treat {nab} as a sample from a multinomial (n; {πab}) distribution. Then

pa+ is the proportion in category a for observation 1, and p+a is the corresponding proportion

for observation 2. We compare samples by comparing marginal proportions {pa+} and {p+a}.

With matched samples, these proportions are correlated, and methods for independent samples

are inappropriate.

We focus on cases where the outcome is binary. When π1+ = π+1, then π2+ = π+2 also, and

there is marginal homogeneity. Since

π1+ − π+1 = π12 − π21,

marginal homogeneity in 2× 2 tables is equivalent to π12 = π21. The table then shows symmetry

across the main diagonal.

6.1.1 Inference for Dependent Proportions

One comparison of the marginal distributions uses δ = π+1 − π1+. Let

d = p+1 − p1+ = p2+ − p+2.

From our earlier results for multinomial covariances, cov(p+1, p1+) = cov(p11 + p21, p11 + p12 sim-

plifies to (π11π22 − π12π21)/n. Thus,

var(
√
nd) = π1+(1− π1+) + π+1(1− π+1)− 2(π11π22 − π12π21). (19)

For large samples, d has approximately a normal sampling distribution. A confidence interval for

δ = π+1 − π1+ is then

d± zα/2σ̂(d),

where

σ̂2(d) = [p1+(1− p1+) + p+1(1− p+1)− 2(p11p22 − p12p21)] /n
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=
[
(p12 + p21)− (p12 − p21)2

]
/n, (20)

The hypothesis of marginal homogeneity is H0 : π1+ = π+1 (i.e., δ = 0). The ratio z = d/σ̂(d)

or its square is a Wald test statistic. Under H0, an alternative estimated variance is

σ̂2
0 =

p12 + p21
n

=
n12 + n21

n2
.

The score test statistic z0 = d/σ̂0(d) simplifies to

z0 =
n21 − n12

(n21 + n12)1/2
. (21)

The square of z0 is a chi-squared statistic with df = 1. The test using it is called McNemar’s test

(McNemar, 1947).

The McNemar statistic depends only on cases classified in different categories for the two

observations. The n11 + n22 on the main diagonal are irrelevant to inference about whether π11

and π22 differ. This may seem surprising, but all cases contribute to inference about how much

π1+ and π+1 differ: for instance, to estimating δ and the standard error.

Prime Minister Approval Rating Example:

The sample proportions of approval of the prime minister’s performance are p1+ = 944/1600 =

0.59 for the first survey and p+1 = 880/1600 = 0.55 for the second. Using (20), a 95% confidence

interval for π+1 − π1+ is (0.55 − 0.59) ± 1.96(0.0095), or (−0.06,−0.02). The approval rating

appears to have dropped between 2 and 6%.

For testing marginal homogeneity the test statistic (21) using the null variance is

z0 =
86− 150

(86 + 150)1/2
= −4.17.

It shows strong evidence of a drop in the approval rating.
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6.1.2 Increase Precision with Dependent Samples

For independent samples of size n each to estimate binomial probabilities π1 and π2, the covariance

for the sample is zero, and

var
[√
n(difference of sample proportions) = π1(1− π1) + π2(1− π2)

]
.

Compare this variance with (19). Dependent samples usually exhibit a positive dependence, in

which case log θ = log [π11π22/ (π12π21)]; that is, π11π22 > π12π21. Thus based on (19), positive

dependence implies that var(d) is smaller than when the samples are independent.

An implication of the above comparison: A study design using dependent samples can help

improve the precision of statistical inferences for within-subject effects.

6.2 Conditional Logistic Regression for Binary Matched Pairs

6.2.1 A Logit Model with Subject-Specific Probabilities

Like in the Prime Minister approval rating data, let (Yi1, Yi2) denote the ith pair of observations,

i = 1, . . . , n. Due to subject heterogeneity, one may believe that different subjects can have

different probabilities of approving Prime Minister’s performance (e.g., depending on unmeasured

subject characteristics such as race, social economic status, etc.) A generalized linear model that

allows this possibility could be the following logit model for the probability of Yit = 1, t = 1, 2:

logit [P (Yit = 1)] = αi + βxi, (22)

where x1 = 0 and x2 = 1. Although permitting subject-specific distributions, it assumes a common

effect β. For subject i,

P (Yi1 = 1) =
exp (αi)

1 + exp (αi)
, P (Yi2 = 1) =

exp (αi + β)

1 + exp (αi + β)
.
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The parameter β compares the response distributions. For each subject, the odds of success for

observation 2 are exp β times the odds for observation 1.

Given the parameters, with model (22) one normally assumes independence of responses for

different subjects and for the two observations on the same subject. However, averaged over all

subjects, the responses are nonnegatively associated. Suppose that |β| is small compared to |αi|.

A subject with a large positive αi has high P (Yij = 1) for each j and is likely to have success

each time; a subject with a large negative αi has low P (Yij = 1) for each j and is likely to have a

failure each time. The greater the variability in {αi}, the greater the overall positive association

between responses (across j), successes (failures) for observation 1 tending to occur with successes

(failures) for observation 2. This is true for any β. The positive association reflects the shared

value of αi for each observation in a pair. No association occurs only when {αi} are identical.

Thus, the model does account for the dependence in matched pairs. Fitting it takes into account

nonnegative association through the structure of the model.

For this momdel, the large number of {αi} causes difficulties with the fitting process and

with the properties of ordinary ML estimators (inconsistency of the ML estimator for β). One

approach of remedy (i.e., the conditional ML approach) is to treat {αi} as nuisance parameters and

maximize the likelihood function for a conditional distribution that eliminates them. This is done

by conditioning the distribution of the responses on sufficient statistics for nuisance parameters.

6.2.2 Conditional Maximum Likelihood Inference for Binary Matched Pairs

For model (22), assuming independence of responses for different subjects and for the two observa-

tions on the same subject (given parameters), the joint mass function for {(y11, y12), . . . , (yn1, yn2)}

is
n∏
i=1

(
exp (αi)

1 + exp (αi)

)yi1 ( 1

1 + exp (αi)

)1−yi1
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×
(

exp (αi + β)

1 + exp (αi + β)

)yi2 ( 1

1 + exp (αi + β)

)1−yi2
.

In terms of the data, this is proportional to

exp

[∑
i

αi(yi1 + yi2) + β

(∑
i

yi2

)]
.

To eliminate {αi}, we condition on their sufficient statistics, the pairwise success totals {Si =

yi1 + yi2}. Given Si = 0, P (Yi1 = Yi2 = 0) = 1, and given Si = 2, P (Yi1 = Yi2 = 1) =. The

distribution of (Yi1, Yi2) depends on β only when Si = 1; that is, only when outcomes differ for

the two responses. Given yi1 + yi2 = 1, the conditional distribution is

P (Yi1 = yi1, Yi2 = yi2 | Si = 1)

= P (Yi1 = yi1, Yi2 = yi2)/ [P (Yi1 = 1, Yi2 = 0) + P (Yi1 = 0, Yi2 = 1)](
exp (αi)

1+exp (αi)

)yi1 (
1

1+exp (αi)

)1−yi1 ( exp (αi+β)
1+exp (αi+β)

)yi2 (
1

1+exp (αi+β)

)1−yi2
exp (αi)

1+exp (αi)
1

1+exp (αi)
+ exp (αi+β)

1+exp (αi+β)
1

1+exp (αi+β)

= exp (β)/ [1 + exp (β)] , if yi1 = 0, yi2 = 1,

= 1/ [1 + exp (β)] , if yi1 = 1, yi2 = 0.

Again, let {nab} denote the count for the four possible sequences. For subjects having Si = 1,∑
i yi1 = n12, the number of subjects having success for observation 1 and failure for observation 2.

Similarly, for those subjects,
∑

i yi2 = n21 and
∑

i Si = n? = n12 + n21. Since n21 is the sum of n?

independent, identical Bernoulli variates, its conditional distribution is binomial with parameter

exp (β)/ [1 + exp (β)]. For testing marginal homogeneity (β = 0), the parameter equals 1/2. In

summary, the conditional analysis for the logit model implies that pairs in which yi1 = yi2 are

irrelevant to inference about β. When this model is realistic, it provides justification for comparing

marginal distributions using only the n21 +n12 pairings having outcomes in different categories at

the two observations.
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Conditional on Si = 1, the joint distribution of the marched pairs is

∏
Si=1

(
1

1 + exp (β)

)yi1 ( exp (β)

1 + exp (β)

)yi2
where the product refers to all pairs having Si = 1. Differentiating the log of this conditional

likelihood and equating to 0 and solving yields the conditional ML estimator of β in model (22).

You can verify that β̂ = log (n21/n12), SE =
√

1/n21 + 1/n22.

6.2.3 Random Effects in Binary Matched-Pairs Model

An alternative remedy to handling the huge number of nuisance parameters in logit model (22)

treats {αi} as random effects. This regards {αi} as an unobserved random sample from a prob-

ability distribution, usually assumed to be N(µ, σ2) with unknown µ and σ. It eliminates {αi}

by averaging with respect to their distribution, yielding a marginal distribution. The likelihood

function then depends on β as well as the N(µ, σ2) parameters (i.e., µ and σ2). It has only three

parameters and is more manageable. This model is an example of a generalized linear mixed model

(GLMM), containing both random effects (parameters) {αi} and the fixed effect β.

Unless the outcome variable is normal, the likelihood function for a GLMM involves intractable

integration. Therefore, numerical methods, such as Gaussian quadrature, Monte Carlo methods,

penalized quasi-likelihood approximation, and Bayesian methods, need to be used for fitting the

model and make inference on the model parameters and/or make predictions using random effects.
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