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Problem 1

Assume that y1, y2, · · · , yn are independent from a Possion distribution.

(a) (1 point) Obtain the likelihood funcrion. Show that the ML estimator µ̂ = ȳ.

The likelihood function and log-likelihood function is :

l
(
µ | y

)
=

n∏
i=1

exp (−µ) µ
yi

yi!

L
(
µ | y

)
=

n∑
i=1

(−µ+ yi logµ− log yi!)

= nȳ logµ− nµ−
n∑
i=1

log yi!

Take the first derivative, set it to zero and solve for µ.

dL

dµ
= nȳ

µ
− n

Then we have the ML estimator for µ or

µ̂ML = ȳ

(b) (1 point each) Construct a large-sample test statistics for H0 : µ = µ0 using (i) the Wald
method, (ii) the score method, (iii) the likelihood-ratio method.

∗an adapted version from Quan’s original homework.

1



1. Wald test:
Wald test is defined as

W = (µ̂− µ0)2

V ar (µ̂)

We estimate the variance of the µ̂ by calculating the inverse of the fisher information evaluated
at µ̂ or

I (µ) |µ=µ̂= −E
[
d2L

dµ2 | µ
]
µ=µ̂

= E
[
nȳµ−2 | µ

]
µ=µ̂

= n

µ̂

Therefore, the Wald statistics is

W = n (ȳ − µ0)2

ȳ

We reject the H0 when W > χ2
1,α

2. Score test:

S (µ0) =

(
nȳ

µ0
− n

)2

n/µ0
= n (ȳ − µ0)2

µ0

We reject the H0 when S > χ2
1,α

3. Likelihood ratio test:

sup
Θ0

L = nȳ logµ0 − nµ0 −
n∑
i=1

log yi!

sup
Θ1

L = nȳ log ȳ − nȳ −
n∑
i=1

log yi!

Hence

−2 log Λ = 2(nȳ log ȳ − nȳ − nȳ log µ0 + nµ0)

= 2n(ȳ log ȳ

µ0
+ µ0 − ȳ)

Reject when −2 log Λ > χ2
1,α.

(c) (1 point each) Construct a large-sample confidence interval for µ using (i) the Wald method,
(ii) the score method, (iii) the likelihood-ratio method.
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1. We simply invert the test to get the confidence interval. For Wald test,

CI = {µ : zW =
√
n|ȳ − µ|√

ȳ
< zα/2}

= {ȳ −
√
ȳ/nzα/2 < µ < ȳ +

√
ȳ/nzα/2}

2. For score test,

CI = {µ : zS =
√
n|ȳ − µ|
√
µ

< zα/2}

= {
2nȳ + z2

α/2 − zα/2
√
z2
α/2 + 4nȳ

2n < µ <
2nȳ + z2

α/2 + zα/2
√
z2
α/2 + 4nȳ

2n }

3. For LRT:

CI = {µ : 2n(ȳ log ȳ
µ

+ µ− ȳ) < χ2
1,α}

No closed-form expressions for the endpoints are available.

Problem 2

(2 point) An investigator wants to estimate the proportion of patients who respond to a new cancer
treatment, and he wants his response rate estimate to be reasonably precise. Specifically, he would
like to have at least 95 confidence that the precision of the response rate estimate is ±0.1. On the
other hand, he has only sufficient funds to recruit and treat 75 patients in his study. Is 75 patients
sufficient to achieve his goal? What alternative information you might want from the investigator
in order to answer his question in a potentially more efficient manner?

Let π be the response rate (binomial parameter). n = 75 is a fairly large sample so we
consider the asymptotic tests. The Fisher information is n

π(1− π) . Hence, the standard
error of the MLE estimator is

SE =
√
π(1− π)

n

A 95% confidence interval of is then

π ∈ (π̂ − 1.96
√
π(1− π)

n
, π̂ + 1.96

√
π(1− π)

n
)

To answer whether ±0.1 can be a 95% confidence interval, let’s try different values of π first.
The Figure 1 shows that we cannot give a definite answer at present.
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Figure 1: Length of Confidence Interval with respect to π.

What we lack here is an estimate of π. If the investigator can give us an estimate π0, we can
plug π0 into the expressions above. It seems if π0 < 0.265 or π0 > 0.735, the 75 sample size
is enough for his goal. Therefore we would like to know the range of the true response rate.

Problem 3

Genotypes AA, Aa and aa occur with probabilities
[
θ2, 2θ (1− θ) , (1− θ)2

]
. A multinomial sample

of size n has frequencies (n1, n2, n3) of those genotypes.

(a) (2 point) Form the log likelihood. Show that θ̂ = (2n1 + n2) / (2n1 + 2n2 + 2n3).

The likelihood function is

l(θ) = θ2n1 [2θ(1− θ)]n2(1− θ)2n3

Hence, the log-likelihood is

L(θ) = 2n1 log θ + n2 log 2 + n2 log θ + n2 log(1− θ) + 2n3 log(1− θ)
= (2n1 + n2) log θ + (2n3 + n2) log(1− θ) + n2 log 2

Solve the equation:

dL

dθ
= 2n1 + n2

θ
− 2n3 + n2

1− θ = 0
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We obtain

θ̂ML = 2n1 + n2

2n1 + 2n2 + 2n3

(b) (2 point) Show that −∂2L (θ) /∂θ2 =
[
(2n1 + n2) /θ2] +

[
(n1 + 2n3) / (1− θ)2

]
and that its

expectation is 2n/ [θ (1− θ)]. Use this to obtain an asymptotic standard error of θ̂.

By differentiating ∂L
∂θ

, we get

−∂
2L

∂θ2 = 2n1 + n2

θ2 + 2n3 + n2

(1− θ)2

So,

I(θ) = E[−∂
2L

∂θ2 ]

= 2nθ2 + 2nθ(1− θ)
θ2 + 2n(1− θ)2 + 2nθ(1− θ)

(1− θ)2

= 4n+ 2n(1− θ)
θ

+ 2nθ
1− θ

= 2n(2 + 1− θ
θ

+ θ

1− θ )

= 2n
θ(1− θ)

By the asymptotic normality of MLE estimator, its standard error is given by

SEasym
(
θ̂
)

= I(θ̂)−1/2 =

√
θ̂(1− θ̂)

2n

(c) (2 point) Explain how to test whether the probabilities truly have this pattern.

The question statement is a little bit ambiguous. Let us consider the null hypothesis H0 :
pAA = θ2, pAa = 2θ(1 − θ).paa = (1 − θ)2 with known θ. Then we can quickly compute a
Pearson statistic which follows χ2

2. We can also perform a Wald test and the asymptotic
standard error is already given in part (b).

However, I guess the real interest is in the independence of two alleles A and a. That is, we
do not know θ, but we want to test whether pAA, pAa, paa have such a relationship, which is
called Hardy-Weinberg equilibrium. In this case, we estimate θ by θ̂ML and still compute
a Pearson statistic. The degree of freedom is only 1 since we have two constraints on the
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three probabilities: 1) the sum is 1 or Hardy-Weinberg equilibrium 2) the usage of ML for
estimating θ. The Pearson statistic is

X2 =
3∑
i=1

(ni − n̂i2)
n̂i

∼ χ2
1

where n̂1 = nθ̂2, n̂2 = 2nθ̂(1− θ̂), n̂3 = n(1− θ̂)2. Reject when X2 > χ2
1 (α).

Likelihood Ratio test Statistics G

G2 = 2
(
n1 log

(
n1/

(
nθ̂2

))
+ n2 log

(
n2/

[
2nθ̂

(
1− θ̂

)])
+ n3 log

(
n3/

(
n
(
1− θ̂

)2
)))

∼ χ2
1

where we reject H0 when G2 > χ2
1 (α).
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