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1. Problem 3.32 (3 points)
First, let #;;; = n;;/n be the MLE of m;;. Each cell can be viewed as the sum of
n i.i.d Bernoulli random variables, which we denote by Sfj(k: = 1,...,n). Obviously
E[¢&;;] = mi;. Moreover, for any two distinct cells,

Cov(&ij, Eap) = El&ij€ab) — TijTap = —TijTap

since at each trial only one cell could be selected. By Central Limit Theorem,
Vn(& — ) B N(0, Diag(w) — wr')

where 7 = (71, T2, To1, T22). Let @ = (v, ). Recall that a function of MLE is still an
MLE, then by Delta method,

Vn(6 — 60) B N(0, D.6(Diag(r) — wr') D,6)
where 6 is the MLE. Again by Delta method,
Vin(( = ¢) 3 N(0, Dy¢ D 8(Diag(mw) — wr') D6 DoC)

where é’ is the MLE. To simplify the covariance matrix, we first notice that
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. With a little algebra, the covariance matrix is
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*an adapted version from Quan’s original homework.



