STAT 545 Homework 4

Quan Zhou*

October 4, 2015

1. **Problem 3.32** (3 points)

First, let $\hat{\pi}_{ij} = n_{ij}/n$ be the MLE of π_{ij} . Each cell can be viewed as the sum of n i.i.d Bernoulli random variables, which we denote by $\xi_{ij}^k(k=1,\ldots,n)$. Obviously $E[\xi_{ij}] = \pi_{ij}$. Moreover, for any two distinct cells,

$$Cov(\xi_{ij}, \xi_{ab}) = E[\xi_{ij}\xi_{ab}] - \pi_{ij}\pi_{ab} = -\pi_{ij}\pi_{ab}$$

since at each trial only one cell could be selected. By Central Limit Theorem,

$$\sqrt{n}(\hat{\boldsymbol{\pi}} - \boldsymbol{\pi}) \stackrel{D}{\rightarrow} \mathcal{N}(\mathbf{0}, Diag(\boldsymbol{\pi}) - \boldsymbol{\pi}\boldsymbol{\pi}')$$

where $\boldsymbol{\pi} = (\pi_{11}, \pi_{12}, \pi_{21}, \pi_{22})$. Let $\boldsymbol{\theta} = (\boldsymbol{\nu}, \boldsymbol{\delta})$. Recall that a function of MLE is still an MLE, then by Delta method,

$$\sqrt{n}(\hat{\boldsymbol{\theta}} - \boldsymbol{\theta}) \stackrel{D}{\rightarrow} N(0, D'_{\boldsymbol{\pi}} \boldsymbol{\theta}(Diag(\boldsymbol{\pi}) - \boldsymbol{\pi} \boldsymbol{\pi}') D_{\boldsymbol{\pi}} \boldsymbol{\theta})$$

where $\hat{\boldsymbol{\theta}}$ is the MLE. Again by Delta method,

$$\sqrt{n}(\hat{\zeta} - \zeta) \stackrel{D}{\rightarrow} N(0, D'_{\theta}\zeta D'_{\pi}\theta(Diag(\pi) - \pi\pi')D_{\pi}\theta D_{\theta}\zeta)$$

where $\hat{\zeta}$ is the MLE. To simplify the covariance matrix, we first notice that

$$D'_{\theta}\zeta D'_{\pi}\theta = (\frac{1}{\delta}, -\frac{\nu}{\delta^2})D'_{\pi}\theta$$
$$= \frac{1}{\delta^2}(\delta \frac{d\nu}{d\pi} - \nu \frac{d\delta}{d\pi})$$

Now let $\eta_{ij} = \delta \frac{d\nu}{d\pi_{ij}} - \nu \frac{d\delta}{d\pi_{ij}}$. With a little algebra, the covariance matrix is

$$\begin{split} &D_{\theta}' \zeta D_{\pi}' \theta (Diag(\pi) - \pi \pi') D_{\pi} \theta D_{\theta} \zeta \\ = &\frac{1}{\delta^4} \eta' (Diag(\pi) - \pi \pi') \eta \\ = &\frac{1}{\delta^4} [\sum_i \sum_j \pi_{ij} (1 - \pi_{ij}) \eta_{ij}^2 - \sum_{\text{distinct cells}} 2\pi_{ij} \pi_{ab} \eta_{ij} \eta_{ab}] \\ = &\frac{1}{\delta^4} [\sum_i \sum_j \pi_{ij} \eta_{ij}^2 - (\sum_i \sum_j \pi_{ij} \eta_{ij})^2] \end{split}$$

^{*}an adapted version from Quan's original homework.