
STAT 550 Homework 7

Yinsen Miao ∗

November 16, 2015

Problem 1

π3 (x) = exp (α3 + β3x)
1 + exp (α1 + β1x) + exp (α2 + β2x)

whose derivative with respective to x is

∂π3 (x)
∂x

= β3 exp (α3 + β3x) [1 + exp (α1 + β1x) + exp (α2 + β2x)]
[1 + exp (α1 + β1x) + exp (α2 + β2x)]2

−

exp (α3 + β3x) [β1 exp (α1 + β1x) + β2 exp (α2 + β2x)]
[1 + exp (α1 + β1x) + exp (α2 + β2x)]2

= −β1 exp (α1 + β1x)− β2 exp (α2 + β2x)
[1 + exp (α1 + β1x) + exp (α2 + β2x)]2

(1)

Note the parameters α3 = β3 = 0 for baseline category 3 because of identifiability reasons.

Therefore,

1. π3 (x) is decreasing if β1 > 0 and β2 > 0.

2. π3 (x) is increasing if β1 < 0 and β2 < 0.

3. π3 (x) is nonmonotone if β1 and β2 have different signs, since the sign of π′ (x) depends on x
in this case.

Problem 2

1. Use the definition of Cumulative Logits model, for j < i

logit [P (Y ≤ j | X = x)]− logit [P (Y ≤ i | X = x)] = (aj − ai) + (βj − βi)x (2)

Since the logit is an increasing function of P (Y ≤ j | x), Equation 2 cannot be positive.
However, it is positive if βj > βi and x is positive or if βj < βi and x is negative. Therefore
with x taking over the R, the cumulative probabilities are misordered for some range of x.
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2. When x ∈ {0, 1}, Equation 2 becomes one of the following case

logit [P (Y ≤ j | X = 0)]− logit [P (Y ≤ i | X = 0)] = (aj − ai) (3)
logit [P (Y ≤ j | X = 1)]− logit [P (Y ≤ i | X = 1)] = (aj + βj)− (ai + βi) (4)

where Equation 3 is negative because of the usual ordering constraint on {aj} or aj < ai

for j < i. To make Equation 4 negative, we should constraint {αj + βj} be increasing in j.
However, with all those constraints the model is equivalent to a saturated model or

logit [P (Y ≤ j | X = 0)] = αj

logit [P (Y ≤ j | X = 1)] = αj + βj

Problem 3

1. We here use the log link for Poisson GLM. According to the outputs of R below, the fitted
model is

log µ̂ = −0.42841 + 0.5893x (5)

# Call:
# glm(formula = satell ~ weight_kg, family = poisson(link = "log"),
# data = df1)
#
# Deviance Residuals:
# Min 1Q Median 3Q Max
# -2.9307 -1.9981 -0.5627 0.9298 4.9992
#
# Coefficients:
# Estimate Std. Error z value Pr(>|z|)
# (Intercept) -0.42841 0.17893 -2.394 0.0167 *
# weight_kg 0.58930 0.06502 9.064 <2e-16 ***
# ---
# Signif. codes: 0 ?**?0.001 ?*?0.01 ??0.05 ??0.1 ??1
#
# (Dispersion parameter for poisson family taken to be 1)
#
# Null deviance: 632.79 on 172 degrees of freedom
# Residual deviance: 560.87 on 171 degrees of freedom
# AIC: 920.16
#
# Number of Fisher Scoring iterations: 5

Based on the outputs, p value is quite low rejecting null hypothesis of a zero-valued coefficient
on weight. For model given in Equation 5, we interpret it as one unit increase in weight has a
multiplicative impact of exp (0.5893) on µ which means that a 1 kg increase in weight yields
a 80.2% increase in the estimated mean.

2. Yes, because the variance of satellites (9.912) is much larger than the mean of satellites (2.919),
while Poisson distribution should have identical mean and variance.
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3. After adjustment for over-dispersion, the new Poisson model is

log (µ̂) = −0.4284 + 0.5893x (6)

# Call:
# glm(formula = satell ~ weight_kg, family = quasipoisson(link = "log"),
# data = df1)
#
# Deviance Residuals:
# Min 1Q Median 3Q Max
# -2.9307 -1.9981 -0.5627 0.9298 4.9992
#
# Coefficients:
# Estimate Std. Error t value Pr(>|t|)
# (Intercept) -0.4284 0.3168 -1.352 0.178
# weight_kg 0.5893 0.1151 5.120 8.17e-07 ***
# ---
# Signif. codes: 0 ?**?0.001 ?*?0.01 ??0.05 ??0.1 ??1
#
# (Dispersion parameter for quasipoisson family taken to be 3.13414)
#
# Null deviance: 632.79 on 172 degrees of freedom
# Residual deviance: 560.87 on 171 degrees of freedom
# AIC: NA
#
# Number of Fisher Scoring iterations: 5

whose results are not largely deviated from non-adjusted model. However, from the estimate
of the dispersion parameter (sum of squared Pearson residuals divided by the residual degrees
of freedom in Page 150) given in the R outputs, the variance of our random component (the
number of satellites for each weight_kg) is roughly three times the size of its mean which
largely confirms our evidence in 2. Also notice that the parameters’ standard errors are larger
for the over-dispersion adjusted (when scale = 3.134) compared to the non-adjusted (when
scale = 1).

4. The R outputs for negative binomial model is given below

log µ̂ = −0.8577 + 0.7575x (7)

# Call:
# glm(formula = satell ~ weight_kg, family = neg.bin(theta = 1),
# data = df1)
#
# Deviance Residuals:
# Min 1Q Median 3Q Max
# -1.8741 -1.4323 -0.3331 0.4902 2.1886
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#
# Coefficients:
# Estimate Std. Error t value Pr(>|t|)
# (Intercept) -0.8577 0.3759 -2.282 0.0238 *
# weight_kg 0.7575 0.1464 5.175 6.35e-07 ***
# ---
# Signif. codes: 0 ?**?0.001 ?*?0.01 ??0.05 ??0.1 ??1
#
# (Dispersion parameter for Negative Binomial family taken to be 0.9089647)
#
# Null deviance: 224.93 on 172 degrees of freedom
# Residual deviance: 203.61 on 171 degrees of freedom
# AIC: 752.8
#
# Number of Fisher Scoring iterations: 6

We can use cross validation or randomly divide the dataset into training and testing data set.
Use the training set to fit the model, predict on the testing and then compute its MSE. In
Figure 1, we observed the MSE of the negative binomial model is slightly smaller than that
of the Poisson.

●

●

●

●

●

● ●●● ●● ●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●●

●

●●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

● ●

● ●

●

●

●

●

●●

●● ●

●

●

●

●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

● ●●

●

●

●

●●●●

●

●● ●●

●

●

● ● ●●● ●

●

● ●● ●

●

●

●

●

●

● ●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●●

● ●

●

●●

● ●

●

●●

●

●

●

●●● ●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●●●

2 3 4 5

0
5

10
15

Fitted Values versus the data

Weight(Kg)

N
um

be
r 

of
 S

at
el

lit
es

Poisson
Adjusted Poisson
Negative Binom

●

●●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●
●

●
●

●

●

●
●●

●
●

●

●

●

●

●
●

●

●

●●

●

●

●●

●

●

●

●

●

●

Poisson Adjusted Poisson Negative Binomial

10
15

20

Comparison of MSE

Figure 1: The fitted model versus the data (LEFT), MSE in the Cross Validation (RIGHT).

Problem 4

1. Based on the parameterization given in Textbook page 304, the R outputs for the cumulative
logit model is given below. The estimated effect β̂1 = −0.406 and β̂2 = −2.036 suggests
that the cumulative probability for very happy ordinal decreases when the traumatic score
increases and is lower for the black than the white.
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# Call:
# polr(formula = happy ~ race + trauma, data = df2)
#
# Coefficients:
# Value Std. Error t value
# raceblack 2.0361 0.6859 2.968
# trauma 0.4056 0.1830 2.216
#
# Intercepts:
# Value Std. Error t value
# very happy|pretty happy -0.5181 0.3400 -1.5238
# pretty happy|not too happy 3.4006 0.5680 5.9872
#
# Residual Deviance: 148.407
# AIC: 156.407

2. Based on the outputs, there are two intercepts in the model. Since when x = 0, the model
becomes

logit
[
P̂ (Y ≤ j | x)

]
= αj

P̂ (Y ≤ j | x) =
exp

(
aj + βTx

)
1 + exp

(
αj + βTx

) (8)

where if we fixed x, the intercept can be interpreted as the category separators. We con-
sider the categorical outcomes as being driven by the replacement of αis or the sequence of
separating constants.

3. Let Y ∗ denote the latent variable whose has cdf G
(
y∗ − βTx

)
. Suppose thresholds −∞ =

α0 < α1 < · · · < αJ <∞ are cutpoints of the continuous scale where an observed response y
satisfies

y = j iff αj−1 ≤ y∗ ≤ αi

Therefore, y falls into j category j when the latent variable y∗ falls into the jth intervals.

P (Y ≤ j | x) = P (Y ∗ ≤ αi | x) = G
(
αj − βTx

)
where {aj} and β are the parameters of our interest in the latent model.

4. Since P (Y = 2 | x) and P (Y ≤ 1 | x) are given as

P (Y ≤ 2 | x) = exp (3.4006− 0.4056x1 − 2.0361x2)
1 + exp (3.4006− 0.4056x1 − 2.0361x2)

P (Y ≤ 1 | x) = exp (−0.5181− 0.4056x1 − 2.0361x2)
1 + exp (−0.5181− 0.4056x1 − 2.0361x2)

Therefore, the predict probabilities for the three levels of happy are shown in Figure 2.

P (Y = 1) = P (Y ≤ 1)
P (Y = 2) = P (Y ≤ 2)− P (Y ≤ 1)
P (Y = 3) = 1− P (Y ≤ 2)− P (Y ≤ 1)
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Figure 2: Estimated values of P (Y = j) for j ∈ {1, 2, 3} by x1 = traumatice scale,x2 = race.

Code

setwd("C:/Users/Yinsen/Desktop/Fall2015/STAT545/HW07/")
# Problem 3

www = "http://yinsenm.github.io/stat545/homework/horseshoecrab.csv"
df1 = read.csv(www)
model1 = glm(satell ~ weight_kg, family = poisson(link = "log"), data = df1)
summary(model1)

model2 = glm(satell ~ weight_kg, family = quasipoisson(link = "log"), data = df1)
summary(model2)

library(MASS)
model3 = glm(satell ~ weight_kg, family = neg.bin(theta = 1), data = df1)
summary(model3)

RMSE = function(model, test) {
mean((df1$satell[test] - predict(model, df1[test,]))^2)

}

R = lapply(1:1e4, function(i) {
test = sample(1:nrow(df1), size = nrow(df1)/2)
modell1 = glm(satell ~ weight_kg, family = poisson(link = "log"), data = df1[-test,])
modell2 = glm(satell ~ weight_kg, family = quasipoisson(link = "log"), data = df1[-test,])
modell3 = glm(satell ~ weight_kg, family = neg.bin(theta = 1), data = df1[-test,])
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list(P = RMSE(modell1, test),
AP = RMSE(modell2, test),
NG = RMSE(modell3, test))

})

pdf("1.pdf", width = 12, height = 6)
par(mfrow = c(1,2))
idx = order(df1$weight_kg)
plot(df1$weight_kg, df1$satell, xlab = "Weight(Kg)",

ylab = "Number of Satellites",
main = "Fitted Values versus the data")

lines(df1$weight_kg[idx], fitted(model1)[idx], col = "black", lty = 1)
lines(df1$weight_kg[idx], fitted(model2)[idx], col = "red", lty = 2)
lines(df1$weight_kg[idx], fitted(model3)[idx], col = "blue", lty = 4)
legend(3.5, 3, c("Poisson", "Adjusted Poisson", "Negative Binom"),

col = c("black", "red", "blue"),
text.col = "black", lty = c(1, 2, 4),
merge = TRUE, bg = "gray90")

RL = matrix(unlist(R), ncol = 3, byrow = T)
colnames(RL) = c("Poisson", "Adjusted Poisson", "Negative Binomial")
boxplot(RL, main = "Comparison of MSE")
par(mfrow = c(1,1))
dev.off()

# Problem 4
library(MASS)
www = "http://yinsenm.github.io/stat545/homework/GSS.csv"
df2 = read.csv(www)
df2$happy = ordered(df2$happy, levels = 1:3,

labels = c("very happy", "pretty happy", "not too happy"))
df2$race = factor(df2$race, levels = 0:1,

labels = c("white", "black"))
model4 = polr(happy ~ race + trauma,data = df2)
summary(model4)

(ctable <- coef(summary(model4)))
p <- pnorm(abs(ctable[, "t value"]), lower.tail = FALSE) * 2
## combined table
(ctable <- cbind(ctable, "p value" = p))

P1 = function(x1, x2) {
exp(-0.5181 - 0.4056*x1 - 2.0361*x2) /

(1 + exp(-0.5181 - 0.4056*x1 - 2.0361*x2))
}

P2 = function(x1, x2) {

7



exp(3.4006 - 0.4056*x1 - 2.0361*x2) /
(1 + exp(3.4006 - 0.4056*x1 - 2.0361*x2))

}

truma = seq(0,6, by = 0.01)
p11 = sapply(truma, function(x) P1(x,0))
p21 = sapply(truma, function(x) P1(x,1))
p12 = sapply(truma, function(x) P2(x,0)) - p11
p22 = sapply(truma, function(x) P2(x,1)) - p21
p13 = 1 - p12 - p11
p23 = 1 - p22 - p21

library(latex2exp)
pdf(file = "2.pdf", height = 4, width = 11)
par(mfrow = c(1,3))
plot(truma, p21, type = "l", col = "red", ylim = c(0, 0.5),

main = "Predicted Probability for Very Happy",
ylab = latex2exp("Probability $P(Y = 1)$"), xlab = "Trauma")

lines(truma, p11, col = "blue")
legend(3, .3, c("Black", "White"),

col = c("red", "blue"), lty = c(1,1))

plot(truma, p22, type = "l", col = "red", ylim = c(0, 1),
main = "Predicted Probability for Pretty Happy",
ylab = latex2exp("Probability $P(Y = 2)$"), xlab = "Trauma")

lines(truma, p12, col = "blue")
legend(3, .3, c("Black", "White"),

col = c("red", "blue"), lty = c(1,1))

plot(truma, p23, type = "l", col = "red", ylim = c(0, 1),
main = "Predicted Probability for Not Happy",
ylab = latex2exp("Probability $P(Y = 3)$"), xlab = "Trauma")

lines(truma, p13, col = "blue")
legend(3, .3, c("Black", "White"),

col = c("red", "blue"), lty = c(1,1))
par(mfrow = c(1,1))
truma = seq(0,6, by = 0.01)
dev.off()
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