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1. Problem 8.1

(a) The model is fit by R function clogit.

library('survival')

vote <- c(rep(c(1,1),175),rep(c(1,8),16),rep(c(0,1),54),rep(c(0,08),188))
year =- rep(c(®8,1),433)

id =- ceiling(1:866/2)

fit =- clogit(vote~year + strata(id))

= summary(fit)

Call:

coxph(formula = Surv(rep(1, 866L), vote) ~ year + strata(id),

method = "exact")

L

n= 866, number of events= 420

coef exp(coef) se(coef) z Pri=|zl|)
year 1.2164 3.3750 0.2846 4.273 1.92e-05 ***

Signif. codes: O "##%*’ 9,001 “**’ §.BH1 **’ .05 “." 0.1 * * 1

exp(coef) exp(-coef) lower .95 upper .95
year 3.375 B.2963 1.932 5.896

Rsquare= 0.025 (max possible= 6.166 )

Likelihood ratio test= 21.78 on 1 df, p=3.051e-06
Wald test 18.26 on 1 df, p=1.924e-05
Score (logrank) test 20.63 on 1 df, p=5.576e-06

Hence 3 = 1.216 and exp(f) = 3.375 = 54/16. § describes the conditional associa-
tion between the 2004 vote and 2008 vote for each fixed individual. The exponential
of its MLE is equal to the ratio of the off-diagonal counts in the table. exp(3) may
also be called the true odds ratio for each individual.

Since R reports a p-value 1.9 x 10~° for B , there is strong evidence that 3 is actually

bigger than 0. Voter preference for Democrats has increased.

(b) «; represents a fixed subject-specific effect for each individual. A larger «; means
the individual has a stronger tendency to vote for Democrats in both 2004 and
2008.

(c) The MLE of 8 for population averaged effect model is simply the log odds ratio.

. 999 x 242
~log 222X 222 () 352
P2 =log 7= 507 = 03



The MLE of 8 for subject-specific model is given above, Bl = 1.216.
They are not same and 32 < Bl. This is expected. As is illustrated in Figure 13.1 of

the textbook, when two individuals have very different «;, their probability curves
P(Y; = 1) v.s. z; (in this problem, x; € [0, 1]) are spaced far apart. The marginal
model tries to fit a curve that is averaged over all the individuals’ curves and thus

it has a shallower slope. By the approximation formula of Zeger et al. (1988),
By~ By(1 4 0.34602) " 1/2 (1)

where o2 is the variance of q; if a random effect model is assumed. In our problem,
o2 is big because most people didn’t change their side, which implies many people
have a very large «; while many others have a very small ;. Therefore, by (1), B

should be much larger.

The McNemar’s test is done in R with no continuity correction.
> marg.table =- matrix(c(175,16,54,188),2,2,byrow=T)
> mcnemar.test({marg.table,correct=F)

McNemar's Chi-squared test

data: marg.table
McNemar's chi-squared = 208.629, df = 1, p-value = 5.576e-06

The p-value is similar to that of conditional logistic regression. This is expected.
McNemar test is actually the score test. Asymptotically, it is equivalent to Wald
test and likelihood ratio test. Therefore, the p-value of the conditional logistic
regression, which is usually computed by Wald test, is often very close to the p-

value of McNemar test, especially when the sample size is large.

No. Neither of them would change. This is because both McNemar’s test and the
conditional likelihood only depend on the off-diagonal counts. For McNemar’s test,
recall that the p-value is evaluated under the null distribution and the diagonal
counts only influence the inferences under the alternative, e.g., how much hetero-
geneity there exists. For conditional logistic regression, observe that the MLE of
B given the whole table is the same as the MLE given only the off-diagonal cells.
This is because, for any § € R, the likelihood of the diagonal cells can always take

any value in R by choosing the appropriate values of ;.



> vote <- c(rep(c(1,1),108),rep(c(1,0),16),rep(c(0,1),54),rep(c(0,0),263))
> fit <- clogit(vote~year + strata(id))
> summary(fit)
call:
coxph(formula = Surv(rep(1, 866L), vote) ~ year + strata(id),
method = "exact")

n= 866, number of events= 270

coef exp(coef) se(coef) z Pr(=lzl)
year 1.2164 3.3750 0.2846 4.273 1.92e-05 ***

Signif. codes: @ "***’ 9.B@1 “**’ B§.81 “*’ B.85 ‘.7 6.1 ° ' 1

exp(coef) exp(-coef) lower .95 upper .95
year 3.375 0.2963 1.932 5.896

Rsgquare= 0.025 (max possible= ©.106 )

Likelihood ratio test= 21.78 on 1 df, p=3.051e-06
Wald test = 18.26 on 1 df, p=1.924e-05
Score (logrank) test = 20.63 on 1 df, p=5.576e-06

> marg.table <- matrix(c(100,16,54,263),2,2,byrow=T)
> mcnemar.test{marg.table,correct=F)

McNemar's Chi-squared test

data: marg.table
McMemar's chi-squared = 20.629, df = 1, p-value = 5.576e-06

2. Problem 8.2

(a) The ‘response’ column in the data provided is treated as Y. Logistic regression is

fitted in R. The fitted model is

logit(P(Y; = 1)) = —0.125 + 0.149I(t = 1) + 0.05201(t = 2) + 0.00358X  (2)

> dat <- as.data.frame(read.table('attitude.csv',header=T,sep=","))
> fit <- glm(response~gender+dummyl+dummy2,data=dat,family="binomial")
> summary(fit)

Call:
glm(formula = response ~ gender + dummyl + dummy2, family = "binomial”,
data = dat)

Deviance Residuals:
Min 10 Median 3Q Max
-1.18% -1.148 -1.125 1.207 1.231

Coefficients:

Estimate Std. Error z value Pr(=|z|)
(Intercept) -0.125408 @.055601 -2.255 0.8241 *
gender 0.883582 6.854138 B.066 0.9472
dummy1 0.149347 0.065825 2.269 0.8233 *
dummy2 0.852018 B.865843 B.790 0.4295

Signif. codes: 0 “#%*%’ g pA1 “**’ .01 ‘** .85 .7 8.1 ° * 1
(Dispersion parameter for binomial family taken to be 1)

Null deviance: 7689.5 on 5549 degrees of freedom
Residual deviance: 7684.2 on 5546 degrees of freedom

AIC: 7692.2

Mumber of Fisher Scoring iterations: 3



(b) I fit the GEE logistic regression in R by using ‘gee’ library. The code and out-

put are attached. In the R output, ‘naive SE’ means the model-based standard

error. ‘robust SE’ means the empirical (sandwich) standard error. The results are

summarized in the following tables.

row.names
alpha
dummyl

dummy?2

oW N

gender

row.names
alpha
dummyl

dummy2

W N M

gender

Exchangeable correlation structure:

Estimate

0.4687000
0.0373000
0.0129700
0.0008939

Estimate
0.468400
0.037300
0.012970
0.001375

Model-based SE

0.016920
0.007023
0.007023
0.021940

row.names
Q1
Q2
Q3

0.000e+00
1.091e-07
6.471e-02
9.675e-01

Q1 Q2

1.0000 0.8173
0.8173  1.0000
0.8173 0.8173

Model-based Pv  Empirical SE

0.016850
0.007420
0.006745
0.021920

Q3

0.8173
0.8173
1.0000

Unstructured correlation:

Model-based SE

0.016920
0.007427
0.006763
0.021930

row.names
Q1
Q2
Q3

0.000e+00
5.119%e-07
5.508e-02
9.500e-01

Q1 Q2

1.0000  0.8257
0.8257 1.0000
0.7957 0.8306

Model-based Pv  Empirical SE

0.016850
0.007420
0.006745
0.021920

Q3

0.7957
0.8306
1.0000

Empirical Pv
0.000e+00
4.991e-07
5.442e-02
9.675e-01

Empirical Pv
0.000e+00
4.991e-07
5.442e-02
9.500e-01

In either assumption of correlation structure, we have observed a very high esti-

mated correlation between the three questions (around 0.8). This high correlation

is indeed expected from Table 11.13. Due to the high correlation, the estimates and

standard errors differ significantly from part (a) where we treat the three answers

of the same individual as independent. Notice that by taking into consideration the

correlation between 3 questions, the evidence for f; become much stronger, which

implies that the attitudes toward different questions do differ.



R code:

Exchangeable:

> library(gee)
> exc <- gee(response~gender+dummyl+dummy2, id=case, data=dat,corstr="exchangeable')
Beginning Cgee S-function, @(#) geeformula.g 4.13 98/81/27

running glm to get initial regression estimate

(Intercept) gender dummy1 dummy2
0.4686880977 0.00085939434 0.0372972973 0.0129729730
> summary(exc)

GEE: GENERALIZED LINEAR MODELS FOR DEPENDENT DATA
gee 5-function, version 4.13 modified 98/01/27 (1998)

Model:
Link: Identity
Variance to Mean Relation: Gaussian
Correlation Structure: Exchangeable
Ccall:
gee(formula = response ~ gender + dummyl + dummy2, id = case,
data = dat, corstr = "exchangeable")

Summary of Residuals:
Min 1Q Median 3Q Max
-0.5068793 -0.4825550 -0.4686881 0.5174458 0.5313119

Coefficients:

Estimate Naive S.E. Naive z Robust S.E. Robust z
(Intercept) ©.4686880977 0.016917979 27.70355085 0.016848315 27.81809838
gender 0.0008539434 0.021538148 0.04074835 0.021521409 0.04077947
dummy1 0.8372972973 0.007022767 5.31091176 0.007419%20 5.02664385
dummy2 0.0129729730 0.007022767 1.84727366 0.006744609 1.92345826

Estimated Scale Parameter: 0.2497433
Number of Iterations: 1

Working Correlation

[.1]1 [.2] [,3]
[1,] 1.0000000 0.8173312 0.8173312
[2,] ©.8173312 1.0000000 0.8173312
[3,] ©.8173312 0.8173312 1.0000000



Unstructured:
> unstr <- gee(response~gender+dummyl+dummy2, id=case, data=dat,corstr="unstructured')
Beginning Cgee S-function, @(#) geeformula.g 4.13 98/01/27
running glm to get initial regression estimate
(Intercept) gender dummy1 dummy2
0.4686880977 0.0008539434 0.0372972973 0.0129725730
> summary(unstr)

GEE: GENERALIZED LINEAR MODELS FOR DEPENDENT DATA
gee S5-function, version 4.13 modified 98/01/27 (1598)

Model:
Link: Identity
Variance to Mean Relation: Gaussian
Correlation Structure: Unstructured
call:
gee(formula = response ~ gender + dummyl + dummy2, id = case,
data = dat, corstr = "unstructured")

Summary of Residuals:
Min 1Q Median 3Q Max
-0.5076510 -0.4827666 -0.4684182 0.5172334 0.5315818

Coefficients:

Estimate MNailve S.E. Naive z Robust S.E. Robust z
(Intercept) 0.468418173 0.016915490 27.69167072 0.0816853850 27.7929485
gender 0.001375486 0.0215326036 0.06271586 0.021516157 0.0627613
dummy1 0.037257297 0.007427091 5.02175084 0.0074159%20 5.0266439
dummy2 B.012572573 0.006762812 1.951828085 0.0067446059 1.9234583

Estimated Scale Parameter: ©.2497433
Number of Iterations: 2

Working Correlation

[,11 [.2] [.3]
[1,] 1.00000680 0.8256973 0.7956920
[2,] §.8256973 1.0000000 0.8306043
[3,] B.7956920 0.8306043 1.0600000



