An Outline of Solution to STAT 545 Midterm Exam - 10/15

1. **(30 points)**

- (a) (15 points)
 - (5 points)

$$OR = 2 * 8/(3 * 3)$$
 (3 points)

Interpretation: The odds of Y's falling in category 1 at level 1 of X is (2*8/(3*3)) times that at level 2 of X; (2 points)

• (5 points)

Diff in prop =
$$2/5 - 3/11$$
 (3 points)

Interpretation: The proportion of being in category 1 of Y at level 1 of X is (2/5-3/11) more than that at level 2 of X, or the difference in the proportion of being in category 1 of Y between levels 1 and 2 of X is (2/5-3/11); (2 points)

• (5 points)

$$RR = (2/5)/(3/11)$$
 (3 points)

Interpretation: The proportion of being in category 1 of Y at level 1 of X is ((2/5)/(3/11)) times that at level 2 of X; (2 points)

- (b) (**15 points**)
 - (5 points)

$$\log OR = \log(2*8/(3*3)), (1 \text{ point})$$

 $SE(\log OR) = \sqrt{1/2 + 1/3 + 1/3 + 1/8}, (1 \text{ point})$
 $\log OR \pm 1.96 * SE(\log OR), (2 \text{ points})$
 $95\%CL : (\exp(LL), \exp(RL)). (1 \text{ point})$

• (5 points)

Diff in prop =
$$2/5 - 3/11$$
, (1 point)
 $SE(\text{Diff in prop}) = \sqrt{2/5(1 - 2/5)/5 + 3/11(1 - 3/11)/11}$, (2 points)
Diff in prop $\pm 1.96 * SE(\text{Diff in prop})$. (2 points)

• (5 points)

$$\log RR = \log(2/5/(3/11)), \ (\mathbf{1} \ \mathbf{point})$$
 $SE(\log RR) = \sqrt{1/2 - 1/5 + 1/3 - 1/11}, \ (\mathbf{1} \ \mathbf{point})$
 $LL = \log(RR) - 1.96 * SE(\log(RR)), \ RL = \log(RR) + 1.96 * SE(\log(RR)),$
 $(\mathbf{2} \ \mathbf{points})$
 $95\%CL : (\exp LL, \exp RL). \ (\mathbf{1} \ \mathbf{point})$

2. **(30 points)**

(a) (14 points) Pearson χ^2 statistic:

$$X^{2} = \sum_{i} \sum_{j} (n_{ij} - \hat{m}_{ij})^{2} / \hat{m}_{ij},$$

where $\hat{m}_{ij} = n_{i+}n_{+j}/n$ with $n_{i+} = \sum_{k} n_{ik}$ and $n_{+j} = \sum_{k} n_{kj}$, i = 1, 2, j = 1, 2. (5 points) DF = 1. (2 points)

Likelihood ratio χ^2 statistics:

$$G^2 = 2 \sum_{i} \sum_{j} n_{ij} \log(n_{ij}/\hat{m}_{ij}),$$

where \hat{m}_{ij} are defined the same as above. (5 points) Df = 1. (2 points)

(b) (16 points) Should not use the test statistics from (a). (2 points)

Reason: Pearson and likelihood ratio χ^2 tests are based on large samples, while the data given are from a small sample. The Pearson and likelihood ratio tests may not be valid. (4 points)

An alternative: Fisher's exact test. Hypergeometric distribution for n_{11} conditional on both row and column totals:

$$\frac{\left(\begin{array}{c}n_{1+}\\n_{11}\end{array}\right)\left(\begin{array}{c}n_{2+}\\n_{+1}-n_{11}\end{array}\right)}{\left(\begin{array}{c}n\\n_{+1}\end{array}\right)},$$

where $n_{11} \in [m_-, m_+]$ with $m_- = \max(0, n_{1+} + n_{+1} - n)$ and $m_+ = \min(n_{1+}, n_{+1})$. (6 points)

P-value:

$$\frac{\binom{4}{1}\binom{4}{3}}{\binom{8}{4}} + \frac{\binom{4}{0}\binom{4}{4}}{\binom{8}{4}}$$

(4 points)

3. **(20 points)**

- (a) (**10 points**)
 - (8 points) $L(\theta) = \theta^{2n_{11}} \theta^{n_{12} + n_{21}} (1 \theta)^{n_{12} + n_{21}} (1 \theta)^{2n_{22}}$. Solve $L'(\theta) = 0$ for $\theta \Longrightarrow \hat{\theta} = (p_{1+} + p_{+1})/2$.
 - (2 points) Show $\hat{\theta}$ actually maximizes the likelihood, e.g., by showing the second derive at $\hat{\theta} < 0$.
- (b) (**10 points**)
 - (6 points) $X^2 = \sum_i \sum_j (n_{ij} \hat{m}_{ij})^2 / \hat{m}_{ij}$ with $\hat{m}_{11} = n\hat{\theta}^2, \hat{m}_{12} = \hat{m}_{21} = n\hat{\theta}(1-\hat{\theta})$, and $\hat{m}_{22} = n(1-\hat{\theta})^2$.
 - (4 points) DF = 2.

4. (**20** points)

- (a) (10 points) Let $\sum_{y=1}^{\infty} r(\theta) \exp(\theta y)/y! = 1$. (2 points) We have $r(\theta) = \left\{ \sum_{y=1}^{\infty} \exp(\theta y)/y! \right\}^{-1} = \left\{ \sum_{y=1}^{\infty} (\exp(\theta))^y/y! \right\}^{-1}$ (3 points) = $\{ \exp(\exp(\theta)) - 1 \}^{-1}$. (5 points)
- (b) (10 points) $f_Y(y;\theta)$ is an exponential-family distribution with $\theta = \theta$, $b(\theta) = \log(\exp(\exp(\theta)) 1)$, $\phi = a(\phi) = 1$, $c(y,\phi) = \log y!$. (4 points)

The kernel of the log-likelihood function for a sample of i.i.d. observations Y_1, \ldots, Y_n is $\theta \sum_{i=1}^n Y_i - n \log(\exp(\exp(\theta)) - 1)$. (2 points)

The likelihood equation therefore is $d \log(\exp(\exp(\theta)) - 1)/d\theta = \bar{Y}$, where $\bar{Y} = \sum_{i=1}^{n} Y_i/n$. (2 points)

After simplification, we get

$$\frac{\exp(\theta)}{1 - \exp(-\exp(\theta))} = \bar{Y}. \ (2 \text{ points})$$